Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Prove Primary Battery Structure, John D. Burkhart, Andy Mccormick, Ryan Yu, Soren Barclay Jun 2023

Prove Primary Battery Structure, John D. Burkhart, Andy Mccormick, Ryan Yu, Soren Barclay

Mechanical Engineering

In conjunction with Prototype Vehicle (PROVE) Laboratory, our group designed, manufactured, and tested a prototype structure to house the battery boxes for PROVE’s endurance vehicle. Our structure was designed to support the batteries during normal use, and in the event of a front crash. Our design is comprised of a secondary composite box to house the battery boxes, a bottom plate to affix the secondary box to the chassis floor, a horizontal plate fastened to the chassis, and a brace structure welded to the chassis. From the outset, we chose to use a secondary box, the primary battery boxes must …


Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez Jun 2017

Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez

Mechanical Engineering

The work accomplished by the Black Gold team improved upon the carbon fiber compression molding research and information available on the Cal Poly San Luis Obispo campus. The team used the rear suspension rocker arm off a Ventana Alpino mountain bike as a design goal for this project. This research and body of work includes the methods used to design a compression molded part for complex part loading and shape. This extends to the process of choosing an appropriate layup process, in addition to benefits and drawbacks of the use of chopped fibers in compression molding. The research includes the …


Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth Jun 2017

Bear Minimum: Ultralight Composite Bear Canister, Rama B. Adajian, Adam C. Eisenbarth

Mechanical Engineering

The ultralight backpacking community needs a strong, easy to use, safe bear canister that is lighter than current market products for trekking in the backcountry. A full design of the lid for the bear canister is to be completed. This includes the locking mechanism to ensure it is bear proof, the interface between the lid and the canister, and the structure of the lid so it passes the strength and weight specifications. The lid, along with the already designed canister body, is to be manufactured with formal documentation. The lid will initially be tested separately and then with the canister …


Compression Molded Composite Component, Greg Hermansen, Larsson Johnson, Joanne Medrano, Kyle Hammell Dec 2016

Compression Molded Composite Component, Greg Hermansen, Larsson Johnson, Joanne Medrano, Kyle Hammell

Mechanical Engineering

The following final design report outlines the design and fabrication of a carbon fiber compression molded sunglasses case. It intends to guide the development of a future lab activity for a composites undergraduate course at Cal Poly – San Luis Obispo. The activity aims to support an educational investigation in "out-of-autoclave" composites manufacturing methods, such as compression molding, which offer some key benefits over autoclave molding. The methodology behind the creation of a conceptual design, an initial prototype, and a final product is laid out in detail below.


Carbon Articulating Backpack Spine, Salvatore Monforte Iii, Darci Lawrence, Savan Patel Dec 2015

Carbon Articulating Backpack Spine, Salvatore Monforte Iii, Darci Lawrence, Savan Patel

Mechanical Engineering

In the field, firefighters and Urban Search and Rescue (USAR) personnel need to transport variable loads efficiently, safely, and comfortably while simultaneously performing certain physical tasks. Current models of external and internal framed backpacks distribute the load of a pack efficiently, but do not allow for the natural movement of the wearer. Wolfpack Gear, Inc. proposed the need for a system which both effectively carries a load and allows for the unhindered natural movement of the user. The goal of this project was to design, build, and test an articulating backpack support system. The first stage of the project comprised …


Carbon Fiber Monocoque Development For A Formula Sae Racecar, Andrew Cunningham, Andrew Ferrell, Matthew Lee, Tony Loogman Jun 2015

Carbon Fiber Monocoque Development For A Formula Sae Racecar, Andrew Cunningham, Andrew Ferrell, Matthew Lee, Tony Loogman

Mechanical Engineering

Monocoque development of the 2015 Cal Poly Formula SAE racecar from design to competition.


Wolfpack Gear Inc. Composite Frame Firefighter Backpack, Gabriel Mountjoy, Blair Ridings, Carl Drummond Buchenroth Nov 2012

Wolfpack Gear Inc. Composite Frame Firefighter Backpack, Gabriel Mountjoy, Blair Ridings, Carl Drummond Buchenroth

Mechanical Engineering

No abstract provided.


Composite Suspension For Formula Sae Vehicle, Reid Olsen, Andrew Bookholt, Eric Melchiori Jun 2010

Composite Suspension For Formula Sae Vehicle, Reid Olsen, Andrew Bookholt, Eric Melchiori

Mechanical Engineering

This senior project report describes how a redesign of the 2008 Cal Poly Formula SAE vehicle's suspension components was conducted using carbon fiber components.