Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

High Performance Electromagnetic Interference Shielding From Lightweight-Flexible Polymer Composite Fiber Structures, Fariha Rubaiya Dec 2021

High Performance Electromagnetic Interference Shielding From Lightweight-Flexible Polymer Composite Fiber Structures, Fariha Rubaiya

Theses and Dissertations

This study focuses on the development and characterization of fiber-based polymer composite structures with the goal of developing high performance, flexible, lightweight, and cost-effective materials for electromagnetic interference shielding and piezoelectricity. Polyvinylidene fluoride (PVDF) was used as the base fiber mat while polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polydiacetylene (PDA) and Zn2GeO4 (ZGO) were incorporated via solution mixing and in-situ polymerization. The PVDF fine fiber systems were produced using the Forcespinning® method. Morphology, structure, thermal stability, electrical properties, EMI shielding effectiveness and piezoelectric performance of the fiber mats were analyzed. The composite system containing 1.25 wt. % of ZGO-PVDF displayed …


In Situ Characterization Of Fiber-Matrix Interface Debonding Via Full-Field Measurements, Robert Livingston Jun 2021

In Situ Characterization Of Fiber-Matrix Interface Debonding Via Full-Field Measurements, Robert Livingston

Theses and Dissertations

Macroscopic mechanical and failure properties of fiber-reinforced composites depend strongly on the properties of the fiber-matrix interface. For example, transverse cracking behavior and interlaminar shear strength of composites can be highly sensitive to the characteristics of the fiber-matrix interface. Despite its importance, experimental characterization of the mechanical behavior of the fiber-matrix interface under normal loading conditions has been limited. This work reports an experimental approach that uses in situ full-field digital image correlation (DIC) to quantify the mechanical and failure behaviors at the fiber-matrix interface. Single fiber model composite samples are fabricated from a proprietary epoxy embedding a single glass …


Autonomous Navigation Of The Surface Autonomous Vehicle For Emergency Rescue (Saver), Andrew Skow Jun 2021

Autonomous Navigation Of The Surface Autonomous Vehicle For Emergency Rescue (Saver), Andrew Skow

ENGS 88 Honors Thesis (AB Students)

Once dropped into the ocean, SAVER will autonomously navigate towards the Advanced Next-Generation Emergency Locator beacon, worn by every NASA astronaut, that emits a 121.5 MHz distress signal. Using a rotating directional loop antenna SAVER is able to detect and identify the direction of the distress beacon and navigate itself towards the signal source. The autonomous navigation system is dependent on several electrical, and mechanical systems to function properly and presents a novel systems engineering problem. Given testing limitations, NASA requires that SAVER is designed to operate indoors and with an umbilical power supply. The radio direction finding (RDF) system …


Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan Jun 2021

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan

Master's Theses

Accurate mechanical analysis of composite structures is necessary for the prediction of laminate behavior. Cylindrical composite tubes are a mainstay in many structural applications. The fundamental design of circular composite cross-sections necessitates the development of a comprehensive composite lamination theory. A new analytical method is developed to characterize the behavior of thin-walled composite cylindrical tubes using a modified plate theory. A generated numerical solver can predict properties such as axial stiffness, bending stiffness, layer stresses, and layer strains in composite tubes subjected to combined mechanical loading and thermal effects. The model accounts for the curvature by transforming and translating the …


Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley Jun 2021

Composite Pegboard, Asa J. Cusick, Luis Corrales, Joelle Hylton, Wyatt Pauley

Mechanical Engineering

Many of those with mobility limitations who are told they will need a wheelchair for the rest of their lives can actually begin to stand and walk again given the proper tools and support. The current design for a wheelchair seeking to support this process is overly complex, heavy, and exhibits some features that could potentially pose a serious health hazard to those using it. The scope of this project is to aid in the design of an adaptable composite wheelchair frame that can be both lightweight and strong, while still allowing for physical diversity of potential users. Through research …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …