Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Cip2a Immunosensor Comprised Of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes Towards Point-Of-Care Oral Cancer Screening, Shaowei Ding, Suprem R. Das, Benjamin J. Brownlee, Kshama Parate, Taylor Davis, Loreen R. Stromberg, Edward K.L. Chan, Joseph Katz, Brian D. Iverson, Jonathan C. Claussen Oct 2018

Cip2a Immunosensor Comprised Of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes Towards Point-Of-Care Oral Cancer Screening, Shaowei Ding, Suprem R. Das, Benjamin J. Brownlee, Kshama Parate, Taylor Davis, Loreen R. Stromberg, Edward K.L. Chan, Joseph Katz, Brian D. Iverson, Jonathan C. Claussen

Faculty Publications

Vertically aligned carbon nanotube array (VANTA) coatings have recently garnered much attention due in part to their unique material properties including light absorption, chemical inertness, and electrical conductivity. Herein we report the first use of VANTAs grown via chemical vapor deposition in a 2D interdigitated electrode (IDE) footprint with a high height-to-width aspect ratio (3:1 or 75:25 µm). The VANTA-IDE is functionalized with an antibody (Ab) specific to the human cancerous inhibitor PP2A (CIP2A)—a alivary oncoprotein that is associated with a variety of malignancies such as oral, breast, and multiple myeloma cancers. The resultant immunosensor is capable of detecting CIP2A …


Functional Optimization Of Carbon Nanotubes, Taylor Davis, Sr. Brian Iverson Sep 2018

Functional Optimization Of Carbon Nanotubes, Taylor Davis, Sr. Brian Iverson

Journal of Undergraduate Research

The objective of this project was to create, characterize, and optimize carbon nanotube (CNT) films as a surface functionalization strategy through modifying the growth, infiltration, and patterning during fabrication.

Carbon nanotubes have drawn attention in various disciplines in the scientific community because of their incredible strength, hardness, wettability (hydrophobicity), as well as their kinetic and electrical properties. At BYU specifically, they are being used in diverse applications including fabrication of superhydrophobic surfaces and interdigitated electrode biosensors.

Carbon nanotubes can be delicate with a diameter of only a few nanometers when grown. However, the process of carbon infiltration can be used …


An Experimental Study On Static And Dynamic Strain Sensitivity Of Embeddable Smart Concrete Sensors Doped With Carbon Nanotubes For Shm Of Large Structures, Andrea Meoni, Antonella D'Alessandro, Austin Downey, Enrique García-Macías, Marco Rallini, A. Luigi Materazzi, Luigi Torre, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini Mar 2018

An Experimental Study On Static And Dynamic Strain Sensitivity Of Embeddable Smart Concrete Sensors Doped With Carbon Nanotubes For Shm Of Large Structures, Andrea Meoni, Antonella D'Alessandro, Austin Downey, Enrique García-Macías, Marco Rallini, A. Luigi Materazzi, Luigi Torre, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini

Faculty Publications

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the …