Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Theses/Dissertations

Materials Science and Engineering

Institution
Keyword
Publication

Articles 31 - 60 of 68

Full-Text Articles in Mechanical Engineering

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri May 2018

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri

Senior Theses

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance (Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained using metal electrode experiments. Due to the distinctive electronic and surface properties of graphene, there is reason to believe these estimates are inadequate. This work seeks to directly characterize the double layer capacitance of a GFET. A unique method for determining the Cdl has been implemented, and data has been obtained for three electrolytes and one ionic fluid. The results yield dramatically lower Cdl values than …


Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Graduate Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another …


Phase Field Model Of Thermally Induced Phase Separation (Tips) For The Formation Of Porous Polymer Membranes, Ashley Green, Aria Green May 2018

Phase Field Model Of Thermally Induced Phase Separation (Tips) For The Formation Of Porous Polymer Membranes, Ashley Green, Aria Green

Mechanical Engineering Undergraduate Honors Theses

Most membrane research and development has been done through experimental work, which can be costly and time consuming. An accurate computational model would greatly reduce the need for these experiments. The focus of the research presented in this paper is to create an accurate computational model for membrane formation using thermally induced phase separation (TIPS). A phase field model is employed to create this model including the Cahn Hilliard Equation and Flory Huggins Theory. This model produced computational results that correspond well with theoretical and experimental results. The model was then adapted to correspond to the PVDF/DPC polymer-solvent system by …


Understanding The Evolution Of Surface Texture Under Boundary Lubrication, Salil T. Bapat May 2018

Understanding The Evolution Of Surface Texture Under Boundary Lubrication, Salil T. Bapat

Graduate Theses and Dissertations

The objective of this research was to understand the evolution of surface texture under boundary/mixed lubrication (BL). Significant material/energy losses occur during BL because of direct contact between the two surfaces. Traditionally, tribofilms have been studied extensively for BL while textures have been used as a static engineering design parameter to enhance lubricant film properties. However, texture is dynamic at the tribological mating interface, where both physical and chemical interactions are continuously modulated. The evolution and the interplay between the tribofilm and texture is least studied in the literature, which is the focus of this research.

MoS2-based lubricants, known for …


Accelerated Creative Problem Solving And Product Improvement Applied To Experimental Devices In A Bloodstain Pattern Interpretation Class--Improving The Role Of Insight Development Tools As A Generator Of New Ideas In Novel Situations, Douglas Ridolfi May 2018

Accelerated Creative Problem Solving And Product Improvement Applied To Experimental Devices In A Bloodstain Pattern Interpretation Class--Improving The Role Of Insight Development Tools As A Generator Of New Ideas In Novel Situations, Douglas Ridolfi

Creativity and Change Leadership Graduate Student Master's Projects

This project uses an action research centered study protocol to examine the effects of a problem-based learning exercise related to bloodstain pattern interpretation in a crime scene processing and general criminalistics class taught as part of an upper division forensic chemistry major in a four year college. The goal is to apply design principles and creative problem solving methods directly adapted to a project involving interpreting a set of crime scene photographs depicting blood spatter and with the aid of guided exercises in ideation and design, lead students into the development of alternate theories of how the bloodstains were created …


Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli May 2018

Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli

Electronic Theses and Dissertations

Metal Additive Manufacturing (AM) is increasingly being used to make functional components. One of the barriers for AM components to become mainstream is the difficulty to certify them. AM components can have widely different properties based on process parameters. Improving an AM processes requires an understanding of process-structure-property correlations, which can be gathered in-situ and post-process through nondestructive and destructive methods. In this study, two metal AM processes were studied, the first is Ultrasonic Additive Manufacturing (UAM) and the second is Laser Powder Bed Fusion (L-PBF). The typical problems with UAM components are inter-layer and inter-track defects. To improve the …


Synthesis And Characterization Of Transition Metal Oxide And Dichalcogenide Nanomaterials For Energy And Environmental Applications, Ren Ren May 2018

Synthesis And Characterization Of Transition Metal Oxide And Dichalcogenide Nanomaterials For Energy And Environmental Applications, Ren Ren

Theses and Dissertations

Transition metal oxides (TMOs) and transition metal dichalcogenides (TMDs) have gained immense interest recently for energy and environmental applications due to their exceptional structural, electronic, and optical properties. For example, titanium dioxide (TiO2) as one of the TMO photocatalysts has been widely studied due to its stability, non-toxicity, wide availability, and high efficiency. However, its wide bandgap significantly limits its use under visible light or solar light. Recent studies also show that semiconducting TMDs could be used as potential supercapacitor electrode materials and platinum (Pt)-free electrocatalysts for economical utilization of renewable energy, because the high cost and scarcity of Pt …


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen Apr 2018

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is …


Evolution Of Mg Az31 Twin Activation With Strain: A Machine Learning Study, Andrew D. Orme Apr 2018

Evolution Of Mg Az31 Twin Activation With Strain: A Machine Learning Study, Andrew D. Orme

Undergraduate Honors Theses

Machine learning is being adopted in various areas of materials science to both create predictive models and to uncover correlations which reveal underlying physics. However, these two aims are often at odds with each other since the resultant predictive models generally become so complex that they can essentially be described as a black box, making them difficult to understand. In this study, complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain. Supervised machine learning is employed, in the form of J-48 decision trees. In one approach, strain is incorporated as an …


A Laboratory Kit For Multimeter Design, Seth Percy, Joshua Perry Apr 2018

A Laboratory Kit For Multimeter Design, Seth Percy, Joshua Perry

Thinking Matters Symposium Archive

The multimeter is an important electrical tool and is a combination of many individual instruments. In practice, common multimeter designs are digital and measure voltage, current, resistance, capacitance, etc., using a single set of probes. Before the digital age, the world relied on analog displays. Some argue that analog displays are outdated technology. However, this overlooks one of the most important characteristics provided by the analog display, which is its ability to provide an instantaneous visual perception. Analog displays are currently used for many applications in aviation and automobiles, demonstrating their continuing usefulness in the field. In the multimeter, the …


Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer Apr 2018

Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer

Electronic Theses and Dissertations

This thesis is an examination of two material systems derived from polylactic acid (PLA) and polyethylene glycol (PEG). PLA is a polymer commonly sourced from renewable sources such as starches and sugars. It is a relatively strong, biodegradable polymer, making it ideal for use in the body. Even though it has a relative high strength, PLA is also brittle leading to the use of plasticizers to increase flexibility. One such plasticizer is PEG, which is a material that can exist at room temperature as either a thin liquid, or a hard waxy solid depending on the molecular weight. The first …


Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani Mar 2018

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani

Doctoral Dissertations

This dissertation is comprised of six chapters. In the first chapter the motivation of this research, which was modeling the deformation behavior and strength characteristics of soils under internal erosion, is briefly explained. In the second chapter a micromechanis-based stress-strain model developed for prediction of sand-silt mixtures behavior is presented. The components of the micromechanics-based model are described and undrained behavior of six different types of sand-silt mixtures is predicted for several samples with different fines contents. The need for a more comprehensive compression model for sand-silt mixtures is identified at the end of this chapter. This desired compression model …


Improved Embedded Atom Method Potentials For Metal Hydride Systems, Robert Fuller Jan 2018

Improved Embedded Atom Method Potentials For Metal Hydride Systems, Robert Fuller

Theses, Dissertations and Capstones

Metal hydride systems are an important research topic in materials science because of their many practical, industrial, and scientific applications. Therefore, the development of reliable and efficient interatomic potentials for metal hydrides systems, to be utilized in molecular simulations, can be of great value in accelerating the research in this field. In this research, fully analytical interatomic Embedded Atom Method (EAM) potentials are developed for the PdAgH system. Ab initio simulations were performed to obtain the properties of selected PdAgH structures for fitting. The potentials are fit utilizing the central atom method without employing time-consuming molecular dynamics simulations in the …


Hydrophobicity Of Low Temperature Vibrating Surfaces, Christian Fergusson Jan 2018

Hydrophobicity Of Low Temperature Vibrating Surfaces, Christian Fergusson

Theses and Dissertations

This study proposes a method to enhance the anti-icing capabilities of superhydrophobic surfaces by utilizing vibration to further reduce contact time of an impacting droplet in addition to keeping the droplet in the Cassie-Baxter regime, where surface adhesion is lower than the opposing Wenzel regime. We tested this with two methods: by investigating the effects of vibration normal to the plane of a superhydrophobic surface being impacted by water droplets in a room temperature environment, with the surface horizontal in a room temperature environment and tiled in a subzero degree environment. The amplitude and frequency of the vibration were varied …


Titanium Incorporated Gallium Oxide (Ga-Ti-O): Structure Property Relationship And Performance Evaluation For Extreme Environment Applications, Sandeep Manandhar Jan 2018

Titanium Incorporated Gallium Oxide (Ga-Ti-O): Structure Property Relationship And Performance Evaluation For Extreme Environment Applications, Sandeep Manandhar

Open Access Theses & Dissertations

The existing power generation systems, which utilize fossil fuels, are in dire need of efficient, reliable chemical sensors that can operate safely at higher temperatures. These sensors control the combustion environment and the emissions during combustion. Several sensing materials such as SnO2, ZnO, TiO2, WO3, and Ga2O3 exhibit high sensitivity to certain type of chemical molecules and in a certain range of temperatures. Among these candidate materials, β-Ga2O3 is stable at very high temperatures and has shown functionality for oxygen sensing at higher temperatures (>700°C). However, the response time and sensitivity must be significantly improved in order to derive …


Equibiaxial Flexural Strength Testing Of Advance Ceramics, Ryan T. Jordan Jan 2018

Equibiaxial Flexural Strength Testing Of Advance Ceramics, Ryan T. Jordan

Honors Undergraduate Theses

Ceramics are very important materials with many unique properties used in numerous industrial applications. Ceramics could be very hard and very strong in comparison to metals; however, they are very brittle, thus they are prone to instantaneous and catastrophic failure. Therefore, their reliability is compromised and it is very important to have advanced techniques that allow evaluating their mechanical behavior in many unusual stress states. One of such testing methods is biaxial strength method, that allows to measure properties not only unidirectional, but also in a biaxial way. The research work for this thesis will be built on design and …


Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi Jan 2018

Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi

Doctoral Dissertations

”Research presented in this dissertation is focused on developing and validating a computational framework for study of crack propagation in polycrystalline composite ceramics capable of designing micro-architectures of phases to improve fracture toughness and damage tolerance of ZrB2-based ultra-high temperature ceramics (UHTCs). A quantitative phase-field model based on the regularized formulation of Griffith’s theory is presented for crack propagation in homogenous and heterogeneous brittle materials. This model utilizes correction parameters in the total free energy functional and mechanical equilibrium equation within the crack diffusive area to ensure that the maximum stress in front of the crack tip is …


Tungsten Doping Induced Superior Mechanical Properties Of Hafnium Oxide For Energy Applications, Ann Marie Uribe Jan 2018

Tungsten Doping Induced Superior Mechanical Properties Of Hafnium Oxide For Energy Applications, Ann Marie Uribe

Open Access Theses & Dissertations

Hafnium oxide, or hafnia, is a high temperature refractory material with good electrical, chemical, optical, and thermodynamic properties. The effects of dopants have been widely studied, especially after the discovery of ferroelectricity induced in hafnia thin films. While attractive and used in the opto-electronic, memory devices, and semiconductor industries, there is a lack in the literature on enhancing the mechanical properties of hafnium oxide, specifically through doping it with tungsten, another material of interest particularly for future high temperature device applications. Thus, this work aimed to grow hafnia thin films doped with varying amounts of tungsten. The samples were grown …


Galvanic And Pitting Corrosion Of A Fastener Assembly, Julie Shallman Jan 2018

Galvanic And Pitting Corrosion Of A Fastener Assembly, Julie Shallman

Williams Honors College, Honors Research Projects

This research focuses on coupled galvanic/pitting corrosion of AA7075 when combined with stainless steel in a fastener assembly. A one-dimensional mathematical model of a well-mixed thin film electrolyte is developed to predict the damage profile of the AA7075 surface when its protective coating is damaged. The damage exposes the galvanic couple. A time dependent system of partial differential equations for potential, chloride concentration, aluminum ion concentration, and damage is developed and solved numerically. Two approaches to calculate the current density within aluminum pits are discussed. The first is a current balance between the cathodic, anodic and passive portions of the …


Raman Spectroscopy Of The Skeleton Of The Coral Acropora Cervicornis, Zachary C. Shepard Jan 2018

Raman Spectroscopy Of The Skeleton Of The Coral Acropora Cervicornis, Zachary C. Shepard

Honors Undergraduate Theses

Coral reefs are an important element of marine ecosystem that are critical to maintain a healthy environment. Unfortunately, in recent years coral reefs are doing poorly and many in parts of the ocean are simply dying. Therefore, study of coral’s structural response to external loads could answer what will happen with their structures, while they exhibit different types of loading. Therefore, the proposition of using in-situ micro-Raman spectroscopy to study skeletons of Acropora cervicornis was used. Coral skeleton samples I subjected to mechanical loading studied their vibrational properties by exciting the material with 532nm visible light. A uniaxial compressive load …


Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao Jan 2018

Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao

Honors Undergraduate Theses

Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. …


The Effect Of Friction Stir Processing On The Microstructure And Tensile Behavior Of Aluminum Alloys, Nelson Gomes Affonseca Netto Jan 2018

The Effect Of Friction Stir Processing On The Microstructure And Tensile Behavior Of Aluminum Alloys, Nelson Gomes Affonseca Netto

UNF Graduate Theses and Dissertations

Friction Stir Processing (FSP) is a promising thermomechanical technique that is used to modify the microstructure of metals locally, and thereby locally improve mechanical properties of the material. FSP uses a simple and inexpensive tool, and has been shown to eliminate pores and also reduce the sizes of intermetallics in aluminum alloys. This is of great interest for research on solidification, production and performance of aluminum alloy castings because FSP can enhance the structural quality of aluminum casting significantly by minimizing the effect of those structural defects.

In the literature, there is evidence that the effectiveness of FSP can change …


The Microstructural Annealing Response Of Cold Gas Dynamically Sprayed Al 6061, Clayton Andrew Cushway Jan 2018

The Microstructural Annealing Response Of Cold Gas Dynamically Sprayed Al 6061, Clayton Andrew Cushway

UNF Graduate Theses and Dissertations

The Cold-Gas Dynamic-Spray process also known as Cold Spray (CS) has been researched for three decades. The CS process is a solid-state deposition technique via supersonic velocity of powder particles at a temperature significantly below the melting point of the spray material. This thesis presents background on the overall CS process parameters, and additional information on the microstructural and mechanical properties of typical Cold Sprayed materials.This Thesis primarily presents a study on the microstructural annealing response of CS Al 6061. It should be noted that for this study, the term “annealing” is used in the sense of the classical metallurgical …


Direct Printing Of Single-Crystal Silicon By Microscale Nanoparticle Printing And Confined Laser Melting And Crystallization, Wan Shou Jan 2018

Direct Printing Of Single-Crystal Silicon By Microscale Nanoparticle Printing And Confined Laser Melting And Crystallization, Wan Shou

Doctoral Dissertations

"The transport and interfacial phenomena in laser melting and crystallization of silicon in micro-/nano-scale confinement lacks sufficient understanding. Uncovering the underlying mechanisms, and hence harness the melting and crystallization processes can help the formation of controllable single-crystal structures or patterns. In this dissertation, a molecular dynamics (MD) simulation was conducted to calculate the interfacial free energy of the silicon system in contact with flat and structured walls. Then the calculated interfacial energies were employed to predict the nucleation mechanisms in a slab of liquid silicon confined by two walls and compared with MD simulation results. Further, in combination with a …


Soy-Based Polyurethane Foam For Insulation And Structural Applications, Gurjot S. Dhaliwal Jan 2018

Soy-Based Polyurethane Foam For Insulation And Structural Applications, Gurjot S. Dhaliwal

Doctoral Dissertations

"Polyurethane (PU) foams are widely used as insulation materials due to their high insulation properties and low cost compared to conventional materials such as styrene and mineral wool. PU foams are traditionally fabricated with petroleum-based precursors. However, high crude price and higher carbon footprint has lead interest of researchers to synthesis PU foams using plant-based raw materials, that are inexpensive and renewable. In this dissertation, PU foams were fabricated using soy-based polyol and its thermal and mechanical properties were investigated. In the first part, of PU foam samples with different formulations were fabricated using soy-based polyol HB230, and varying amounts …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …


Assisted Development Of Mesophase Pitch With Dispersed Graphene And Its Resulting Carbon Fibers, Aaron Owen Jan 2018

Assisted Development Of Mesophase Pitch With Dispersed Graphene And Its Resulting Carbon Fibers, Aaron Owen

Theses and Dissertations--Mechanical Engineering

The efficacy of dispersed reduced graphene oxide (rGO) as a nucleation site for the growth of mesophase in an isotropic pitch was investigated and quantified in this study. Concentrations of rGO were systematically tested in an isotropic petroleum and coal-tar pitch during thermal treatments and compared to pitch without rGO. The mesophase content of each thermally treated pitch was quantified by polarized light point counting. Further characterization of softening temperature and insolubles were quantified. Additionally, the pitches with and without rGO were melt spun, graphitized, and tensile tested to determine the effects of rGO on graphitized fiber mechanical properties and …


Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and …


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured laminates compared …


Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen Jan 2018

Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen

Masters Theses

"The objective of this thesis work was to design ceramic paste systems that assist in achieving a high theoretical density ( > 95%) after deposition by a novel additive manufacturing process, i.e. Ceramic On-Demand Extrusion (CODE). The work is encompassed in five main sections: Sections 1 and 2 provide an introduction and literature review of relevant topics for the following sections of experimentation. Section 3 provides an analysis of a reaction chemistry to identify three discrete materials that could be combined via CODE and result in zirconium diboride (ZrB2) post-sintering. Section 4 describes the development of a high solids …