Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Doctoral Dissertations

Discipline
Institution
Keyword

Articles 1 - 23 of 23

Full-Text Articles in Mechanical Engineering

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson Dec 2017

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson

Doctoral Dissertations

The Tracking Fluoroscope System II, a mobile robotic fluoroscopy platform, developed and built at the University of Tennessee, Knoxville, presently employs a pattern matching algorithm in order to identify and track a marker placed upon a subject’s knee joint of interest. The purpose of this research is to generate a new tracking algorithm based around the human gait cycle for prediction and improving the overall accuracy of joint tracking.

This research centers around processing the acquired x-ray images of the desired knee joint obtained during standard clinical operation in order to identify and track directly through the acquired image. Due …


The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli Nov 2017

The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli

Doctoral Dissertations

Particle dispersions are ubiquitous in our daily lives ranging from food and pharmaceutical products to inks. There has been great interest in the recent years in formulation of functional inks to fabricate myriad flexible electronic devices through high-throughput roll-to-roll technologies. The formulations often contain several functional additives or rheological modifiers that can affect the microstructure, rheology and processing. Understanding the rheology of formulations is important for tuning the formulation for optimal processing. This thesis presents investigations on the rheology of particle dispersions and their impact on roll-to-roll technologies. Shear-thickening behavior is common in particle dispersions, particularly, concentrated particulate inks. We …


Bio-Based Wind Turbine Blades: Renewable Energy Meets Sustainable Materials For Clean, Green Power, Rachel Koh Nov 2017

Bio-Based Wind Turbine Blades: Renewable Energy Meets Sustainable Materials For Clean, Green Power, Rachel Koh

Doctoral Dissertations

Wood, once the material of choice for wind turbine blades, was phased out in the late 20th century as the growing size of blades imposed stricter material requirements and glass- and carbon-fiber composites gained industry popularity. However, the last several years have seen great advances in bio-based composite materials technology, including flax, hemp, and wood composites and laminates. These materials are increasingly utilized in high-performance, structurally demanding applications, largely because they are a more sustainable choice than many other engineering materials. Today, as the first glass-fiber wind turbine blades are ready to retire, wind developers are presented with an enormous …


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key factors …


Value Of Flow Measurement Accuracy In Hydropower Plants With Short Converging Intakes, Mark Herbert Christian Aug 2017

Value Of Flow Measurement Accuracy In Hydropower Plants With Short Converging Intakes, Mark Herbert Christian

Doctoral Dissertations

This report documents research undertaken to determine the value of flow measurement accuracy in hydropower plants with short converging intakes. The motivation was to provide a suite of tools and best practices to streamline flow measurement sensor modeling in any type of hydropower plant. The Lower Granite Lock and Dam hydroplant was leveraged in development of the analysis tool. Computational fluid dynamics (CFD) models of Lower Granite Unit 4 provided necessary information about the hydraulic structures distribution through the unit. Two different CFD models were created. The first was done using the as-built plans; the second was created through modifications …


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use …


Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark May 2017

Computational Thermal-Hydraulics Modeling Of Twisted Tape Enabled High Heat Flux Components, Emily Buckman Clark

Doctoral Dissertations

The goal of this work was to perform a computational investigation into the thermalhydraulic performance of water-cooled, twisted tape enabled high heat flux components at fusion relevant conditions. Fusion energy is a promising option for future clean energy generation, but the community must overcome significant scientific and engineering challenges before meeting the goal of electricity generation. One such challenge is the high heat flux thermal management of components in fusion and plasma physics experiments. Plasma facing components in the magnetic confinement devices, such as ITER or W7-X, will be subjected to extreme heat loads on the order of 10-20 MW/m …


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires an …


Modeling, Analysis, Force Sensing And Control Of Continuum Robots For Minimally Invasive Surgery, Caroline Bryson Black May 2017

Modeling, Analysis, Force Sensing And Control Of Continuum Robots For Minimally Invasive Surgery, Caroline Bryson Black

Doctoral Dissertations

This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and …


Control Of Single- And Dual-Probe Atomic Force Microscopy, Muthukumaran Loganathan Jan 2017

Control Of Single- And Dual-Probe Atomic Force Microscopy, Muthukumaran Loganathan

Doctoral Dissertations

“Atomic force microscope (AFM) is one of the important and versatile tools available in the field of nanotechnology. It is a type of probe-based microscopy wherein an atomically sharp tip, mounted on the free end of a microcantilever, probes the surface of interest to generate 3D topographical images with nanoscale resolution. An integral part of the AFM is the feedback controller that regulates the probe deflection in the presence of surface height changes, enabling the control action to be used for generating topographical image of the sample. Besides sensing, the probe can also be used as a mechanical actuator to …


Additive Manufacturing Of Glass Using A Filament Fed Process, Junjie Luo Jan 2017

Additive Manufacturing Of Glass Using A Filament Fed Process, Junjie Luo

Doctoral Dissertations

"There are many scientific and engineering applications of glass including optics, communications, electronics, and hermetic seals, there has been minimal research towards the Additive Manufacturing (AM) of transparent glass parts. The special thermal and optical properties of glasses make them hard to be printed using conventional AM techniques. In this dissertation, two different AM techniques for glass AM were developed, Selective Laser Melting (SLM) and filament fed process.

Semi-transparent parts were printed with SLM process. However, the filament fed process was found to be more robust and promising for printing optically transparent glass parts. Therefore, this dissertation is focused on …


Continuous Focusing And Separation Of Microparticles With Acoustic And Magnetic Fields, Ran Zhou Jan 2017

Continuous Focusing And Separation Of Microparticles With Acoustic And Magnetic Fields, Ran Zhou

Doctoral Dissertations

"Microfluidics enables a diverse range of manipulations (e.g., focusing, separating, trapping, and enriching) of micrometer-sized objects, and has played an increasingly important role for applications that involve single cell biology and the detection and diagnosis of diseases. In microfluidic devices, methods that are commonly used to manipulate cells or particles include the utilization of hydrodynamic effects and externally applied field gradients that induce forces on cells/particles, such as electrical fields, optical fields, magnetic fields, and acoustic fields.

However, these conventional methods often involve complex designs or strongly depend on the properties of the flow medium or the interaction between the …


Event-Triggering Architectures For Adaptive Control Of Uncertain Dynamical Systems, Ali Talib Oudah Albattat Jan 2017

Event-Triggering Architectures For Adaptive Control Of Uncertain Dynamical Systems, Ali Talib Oudah Albattat

Doctoral Dissertations

"In this dissertation, new approaches are presented for the design and implementation of networked adaptive control systems to reduce the wireless network utilization while guaranteeing system stability in the presence of system uncertainties. Specifically, the design and analysis of state feedback adaptive control systems over wireless networks using event-triggering control theory is first presented. The state feedback adaptive control results are then generalized to the output feedback case for dynamical systems with unmeasurable state vectors. This event-triggering approach is then adopted for large-scale uncertain dynamical systems. In particular, decentralized and distributed adaptive control methodologies are proposed with reduced wireless network …


Characterization And Numerical Simulation Of The Microstructural And Micromechanical Viscoelastic Behavior Of Oil Sands Using The Discrete Element Method, Eric Kofi Gbadam Jan 2017

Characterization And Numerical Simulation Of The Microstructural And Micromechanical Viscoelastic Behavior Of Oil Sands Using The Discrete Element Method, Eric Kofi Gbadam

Doctoral Dissertations

"Oil sands are naturally geologic formations of predominantly quartz sand grains whose void spaces are filled with bitumen, water, and dissolved gases. The electric rope shovel is the primary equipment used for excavating the Athabasca oil sand formations. The equipment's static and dynamic loads are transferred to the formation during excavation and propel. These loads cause ground instability leading to sinkage or rutting, crawler wear, and fracture failures. These problems result in unplanned downtimes, production losses, and high maintenance costs. In order to address these problems, there is a need to develop valid models that capture the behavior and performance …


Reliability Prediction In Early Design Stages, Yao Cheng Jan 2017

Reliability Prediction In Early Design Stages, Yao Cheng

Doctoral Dissertations

"In the past, reliability is usually quantified with sufficient information available. This is not only time-consuming and cost-expensive, but also too late for occurred failures and losses. For solving this problem, the objective of this dissertation is to predict product reliability in early design stages with limited information. The current research of early reliability prediction is far from mature. Inspired by methodologies for the detail design stage, this research uses statistics-based and physics-based methodologies by providing general models with quantitative results, which could help design for reliability and decision making during the early design stage. New methodologies which accommodate component …


Design, Modeling, Fabrication, And Testing Of A Multistage Micro Gas Compressor With Piezoelectric Unimorph Diaphragm And Passive Microvalves For Microcooling Applications, Shawn Thanhson Le Jan 2017

Design, Modeling, Fabrication, And Testing Of A Multistage Micro Gas Compressor With Piezoelectric Unimorph Diaphragm And Passive Microvalves For Microcooling Applications, Shawn Thanhson Le

Doctoral Dissertations

This dissertation investigates the development of a multistage micro gas compressor utilizing multiple pump stages cascaded in series to increase the pressure rise with passive microvalves and piezoelectric unimorph diaphragms. This research was conducted through modeling, simulation, design, and fabrication of the microcompressor and its components. A single-stage and a two-stage microcompressor were developed to demonstrate and compare the performance and effectiveness of using a cascaded multistage design.

Steady fluid flow through static microvalves structure was studied to gain insight on its gas flow dynamics and characteristics. Transient analysis combined with the structure's interaction was investigated with an analytical model …


Processing, Microstructure, And Mechanical Properties Of Zirconium Diboride-Molybdenum Disilicide Ceramics And Dual Composite Architectures, Ryan Joseph Grohsmeyer Jan 2017

Processing, Microstructure, And Mechanical Properties Of Zirconium Diboride-Molybdenum Disilicide Ceramics And Dual Composite Architectures, Ryan Joseph Grohsmeyer

Doctoral Dissertations

"This research had two objectives: characterization of processing-microstructure-mechanical property relationships of conventional ZrB2-MoSi2 ceramics at room temperature (RT) and 1500⁰C in air, and fabrication of ZrB2-MoSi2 dual composite architectures (DCAs) for use near 1500⁰C. Elastic moduli, fracture toughness, and flexure strength were measured at RT and 1500⁰C for 15 ZrB2-MoSi2 ceramics hot pressed using fine, medium, or coarse ZrB2 starting powder with 5-70 vol.% MoSi2, referred to as FX, MX, and CX respectively where X is the nominal MoSi2 content. MoSi2 decomposed during sintering, resulting in …


Optimal Design And Freeform Extrusion Fabrication Of Functionally Gradient Smart Parts, Amir Ghazanfari Jan 2017

Optimal Design And Freeform Extrusion Fabrication Of Functionally Gradient Smart Parts, Amir Ghazanfari

Doctoral Dissertations

"An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density was developed. In this process, an aqueous paste of ceramic particles with a very low binder content (<1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Sample parts made of alumina and fully stabilized zirconia were produced using this process and their mechanical properties including density, strength, Young's modulus, Weibull modulus, toughness, and hardness were examined. Microstructural evaluation was also performed to measure the grain size, and critical flaw sizes were obtained. The results indicate that the proposed method enables fabrication of geometrically complex parts with superior mechanical properties. Furthermore, several methods were developed to increase the productivity of the CODE process and enable manufacturing of functionally graded materials with an optimum distribution of material composition. As an application of the CODE process, advanced ceramic components with embedded sapphire optical fiber sensors were fabricated and properties of parts and sensors were evaluated using standard test methods"--Abstract, page iv.


Thermomechanical Fatigue Life Investigation Of An Ultra-Large Mining Dump Truck Tire, Wedam Nyaaba Jan 2017

Thermomechanical Fatigue Life Investigation Of An Ultra-Large Mining Dump Truck Tire, Wedam Nyaaba

Doctoral Dissertations

The cost benefits associated with the use of heavy mining machinery in the surface mining industry has led to a surge in the production of ultra-large radial tires with rim diameters in excess of 35 in. These tires experience fatigue failures in operation. The use of reinforcing fillers and processing aids in tire compounds results in the formation of microstructural inhomogeneity in the compounds and may serve as sources of crack initiation in the tire. Abrasive material cutting is another source of cracks in tires used in mining applications. It suffices, then, to assume that every material plane in the …


Numerical And Experimental Study Of New Designs Of All-Vanadium Redox Flow Batteries For Performance Improvement, Mohammed Abdulkhabeer Ali Al-Yasiri Jan 2017

Numerical And Experimental Study Of New Designs Of All-Vanadium Redox Flow Batteries For Performance Improvement, Mohammed Abdulkhabeer Ali Al-Yasiri

Doctoral Dissertations

"Energy storage is envisioned as a key part of a renewable energy solution incorporated in a grid that overcomes two critical limits of renewable energy: intermittency and uncertainty. Among various technologies, a vanadium redox flow battery (VRFB) offers a promise because of its unique features such as long cycle life, separation of energy and power ratings, and capability of a deep discharge. The remaining challenges, however, include the limited application due to low energy density and complicated geometries. The complex geometry makes it difficult to optimize the performance and can cause a serious concern about leakage of the liquid. The …


Repair Of Metallic Components Using Hybrid Manufacturing, Renwei Liu Jan 2017

Repair Of Metallic Components Using Hybrid Manufacturing, Renwei Liu

Doctoral Dissertations

"Many high-performance metal parts users extend the service of these damaged parts by employing repair technology. Hybrid manufacturing, which includes additive manufacturing (AM) and subtractive manufacturing, provides greater build capability, better accuracy, and surface finish for component repair. However, most repair processes still rely on manual operations, which are not satisfactory in terms of time, cost, reliability, and accuracy. This dissertation aims to improve the application of hybrid manufacturing for repairing metallic components by addressing the following three research topics. The first research topic is to investigate and develop an efficient best-fit and shape adaption algorithm for automating 3D models' …


Manufacturing Of Advanced Continuous Fiber Reinforced Composites For High Temperature Applications, James Robert Nicholas Jan 2017

Manufacturing Of Advanced Continuous Fiber Reinforced Composites For High Temperature Applications, James Robert Nicholas

Doctoral Dissertations

"New resin systems have enabled composites to be considered as attractive alternatives in structural applications that require material to be stronger, lighter and/or more resilient to environmental effects. The current work is on the development of processes to produce continuous fiber reinforced materials from two state of the art resin systems. Two processes were developed to produce continuous fiber reinforced ceramic materials from a preceramic polymer. The first was a vacuum forming process developed using the out-of-autoclave polymer composite manufacturing technique in conjunction with the polymer infiltration and pyrolysis process to produce ceramic composite material of zirconium diboride-silicon carbide reinforced …


Volumetric Error Compensation For 5-Axis Machine Tools, Jennifer Ruth Creamer Jan 2017

Volumetric Error Compensation For 5-Axis Machine Tools, Jennifer Ruth Creamer

Doctoral Dissertations

"This work presents a geometric error compensation method for large 5-axis machine tools. The compensation method presented here uses tool tip measurements recorded throughout the axis space to construct a position-dependent geometric error model that can easily be used for error compensation. The measurements are taken using a laser tracker, permitting rapid error data gathering at most locations in the axis space. First two model types are compared for generating table-based error compensation and experimental results are presented. Table-based compensation is then extended to machine tool controller types with restrictions on the number or combination of compensation tables using an …