Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Constrained Layer Damping Of Honeycomb Composite Structures, Rohit Telukunta Aug 2011

Constrained Layer Damping Of Honeycomb Composite Structures, Rohit Telukunta

All Theses

Composite sandwich structures have replaced homogenous dense solids in many applications due to their advantages of high stiffness to weight ratio, and higher damping characteristics. Higher damping in engineering applications is desirable to reduce structural vibrations. The application of a viscoelastic layer between two thin face sheets gives rise to the concept of constrained layer damping which is an effective technique to achieve increased damping in engineering applications.
Honeycomb cellular structures are often used for the core in sandwich construction because of their low density and high stiffness properties. Regular honeycombs are defined by conventional hexagonal geometry, which gives rise …


Thermodynamic Approach To Fatigue Failure Analysis In Metals And Composite Materials, Mehdi Naderi Abadi Jan 2011

Thermodynamic Approach To Fatigue Failure Analysis In Metals And Composite Materials, Mehdi Naderi Abadi

LSU Doctoral Dissertations

Fatigue is a dissipative process and must obey the laws of thermodynamics. In general, it can be hypothesized that the degradation of machinery components is a consequence of irreversible thermodynamic processes that disorder a component, and that degradation is a time dependent phenomenon with increasing disorder. This suggests that entropy —a fundamental parameter in thermodynamics that characterizes disorder— offers a natural measure of component degradation. The majority of the existing methods for prediction of fatigue are limited to the study of a single fatigue mode, i.e., bending or torsion or tension-compression. Further, the variability in the duty cycle in a …