Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Incorporation Of Evidences Into An Intelligent Computational Argumentation Network For A Web-Based Collaborative Engineering Design System, Xiaoqing Frank Liu, Ekta Khudkhudia, Ming-Chuan Leu May 2008

Incorporation Of Evidences Into An Intelligent Computational Argumentation Network For A Web-Based Collaborative Engineering Design System, Xiaoqing Frank Liu, Ekta Khudkhudia, Ming-Chuan Leu

Computer Science Faculty Research & Creative Works

Conflicts among the stakeholders are unavoidable in the process of collaborative engineering design. Resolution of these conflicts is a challenging task. In our previous research, a web based intelligent collaborative system was developed which provides decision-making support, using computational argumentation techniques. Enhancements were done to this system to incorporate the priorities of the stakeholders and to detect arguments that self conflict. As an effort to make this system more effective and more objective in the process of decision making, we develop a method to assess the effect of evidences in the argumentation network, using Dempster-Shafer theory of evidence and fuzzy …


Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Mar 2008

Output Feedback Controller For Operation Of Spark Ignition Engines At Lean Conditions Using Neural Networks, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines operating at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle bifurcation of heat release. Past literature suggests that operating an engine under such lean conditions can significantly reduce NO emissions by as much as 30% and improve fuel efficiency by as much as 5%-10%. At lean conditions, the heat release per engine cycle is not close to constant, as it is when these engines operate under stoichiometric conditions where the equivalence ratio is 1.0. A neural network controller employing output feedback has shown ability in simulation to reduce the nonlinear cyclic dispersion observed under …