Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue Oct 1991

Finite Element Frequency Domain Solution Of Nonlinear Panel Flutter With Temperature Effects And Fatigue Life Analysis, David Yongxiang Xue

Mechanical & Aerospace Engineering Theses & Dissertations

A frequency domain solution method for nonlinear panel flutter with thermal effects using a consistent finite element formulation has been developed. The von Karman nonlinear strain-displacement relation is used to account for large deflections, the quasi-steady first-order piston theory is employed for aerodynamic loading and the quasi-steady thermal stress theory is applied for the thermal stresses with a given change of the temperature distribution, ΔΤ (x, y, z). The equation of motion under a combined thermal-aerodynamic loading can be mathematically separated into two equations and then solved in sequence: (1) thermal-aerodynamic postbuckling and (2) limit-cycle oscillation. The Newton-Raphson iteration technique …


On Shock Capturing For Liquid And Gas Media, Tze Jang Chen Jul 1991

On Shock Capturing For Liquid And Gas Media, Tze Jang Chen

Mathematics & Statistics Theses & Dissertations

The numerical investigation of shock phenomena in gas or liquid media where a specifying relation for internal energy is absent poses special problems. Classically, for gas dynamics the usual procedure is to employ a splitting scheme to remove the source terms from the Euler equations, then up-wind biased shock capturing algorithms are built around the Riemann problem for the system which remains. However, in the case where the Euler equations are formulated in the term of total enthalpy, a technical difficulty associated with equation splitting forces a pressure time derivative to be treated as a source term. This makes it …


Integrated System Identification And Adaptive State Estimation For Control Of Flexible Space Structures, Chung-Wen Chen Jul 1991

Integrated System Identification And Adaptive State Estimation For Control Of Flexible Space Structures, Chung-Wen Chen

Mechanical & Aerospace Engineering Theses & Dissertations

Accurate state information is crucial for control of flexible space structures in which the state feedback strategy is used. The performance of a state estimator relies on accurate knowledge about both the system and its disturbances, which are represented by system model and noise covariances respectively. For flexible space structures, due to their great flexibility, obtaining good models from ground testing is not possible. In addition, the characteristics of the systems in operation may vary due to temperature gradient, reorientation, and deterioration of material, etc. Moreover, the disturbances during operation are usually not known. Therefore, adaptive methods for system identification …


Two-Dimensional Heat Loss From A Building Slab Including Convective Effects In Saturated Soil, William W. Rust Iii Apr 1991

Two-Dimensional Heat Loss From A Building Slab Including Convective Effects In Saturated Soil, William W. Rust Iii

Mechanical & Aerospace Engineering Theses & Dissertations

The heat loss from a building slab was investigated. The continuity equation, Darcy's Law and the energy equation were formulated to include the temperature dependence of viscosity and density of water. The governing equations and appropriate boundary conditions were transformed into dimensionless variables. A finite difference numerical scheme was constructed based on the Gauss-Seidel method by lines and solved iteratively in alternating directions. A correlation between the geometrical characteristics of the domain, the convective surface heating parameters, and the total nondimensional slab heat loss in two dimensions was discovered. Furthermore, the correlation was extended to three-dimensional slabs and produced good …


Prediction And Control Of Asymmetric Vortical Flows Around Slender Bodies Using Navier-Stokes Equations, Tin-Chee Wong Apr 1991

Prediction And Control Of Asymmetric Vortical Flows Around Slender Bodies Using Navier-Stokes Equations, Tin-Chee Wong

Mechanical & Aerospace Engineering Theses & Dissertations

Steady and unsteady vortex-dominated flows around slender bodies at high angles of attack are solved using the unsteady, compressible Navier-Stokes equations. An implicit upwind, finite-volume scheme is used for the numerical computations.

For supersonic flows past pointed bodies, the locally-conical flow assumption has been used. Asymmetric flows past five-degree semiapex cones using the thin-layer Navier-Stokes equations at different angles of attack, freestream Mach numbers, Reynolds numbers, grid fineness, computational domain size, sources of disturbances and cross-section shapes have been studied. The onset of flow asymmetry occurs when the relative incidence of pointed forebodies exceeds certain critical values. At these critical …


Kinematic Synthesis Of Deployable-Foldable Truss Structures Using Graph Theory, Dirk B. Warnaar Apr 1991

Kinematic Synthesis Of Deployable-Foldable Truss Structures Using Graph Theory, Dirk B. Warnaar

Mechanical & Aerospace Engineering Theses & Dissertations

A graph theoretic approach is applied to the conceptual design of deployable truss structures. The characteristics that relate to the inter-connectivity of the elements of a deployable truss structure can be captured in a schematic representation, called a graph. A procedure is presented that enables the exhaustive generation of these graphs for structures of any given number of nodes and links and which are foldable onto a plane or onto a line.

A special type of truss structures, called truss modules, is presented. Graphs of this class of structures form a subset of the graphs of truss structures. Two procedures …


Large-Amplitude Finite Element Flutter Analysis Of Composite Panels In Hypersonic Flow, Carl E. Gray Jr. Apr 1991

Large-Amplitude Finite Element Flutter Analysis Of Composite Panels In Hypersonic Flow, Carl E. Gray Jr.

Mechanical & Aerospace Engineering Theses & Dissertations

A finite-element approach is presented for determining the nonlinear flutter characteristics of two-dimensional isotropic and three-dimensional composite laminated thin panels using the third-order-piston, transverse loading, aerodynamic theory. The unsteady, hypersonic, aerodynamic theory and the von Karman large deflection plate theory are used to formulate the aeroelastic problem. Nonlinear flutter analyses are performed to assess the influence of the higher-order aerodynamic theory on the structure's limit-cycle amplitude and the dynamic pressure of the flow velocity. A solution procedure is presented to solve the nonlinear panel flutter and large-amplitude free vibration finite element equations. This procedure is a linearized updated mode with …


Second Coefficient Of Viscosity In Air, Robert L. Ash, Allan J. Zuckerwar, Zhonquan Zheng Jan 1991

Second Coefficient Of Viscosity In Air, Robert L. Ash, Allan J. Zuckerwar, Zhonquan Zheng

Mechanical & Aerospace Engineering Faculty Publications

Acoustic attenuation measurements in air were analyzed in order to estimate the second coefficient of viscosity. Data over a temperature range of 11 C to 50 C and at relative humidities between 6 percent and 91 percent were used. This analysis showed that the second coefficient of viscosity varied between 1900 and 20,000 times larger than the dynamic or first coefficient of viscosity over the temperature and humidity range of the data. In addition, the data showed that the molecular relaxation effects, which are responsible for the magnitude of the second coefficient of viscosity, place severe limits on the use …


Numerical Modeling Of Flame Lift-Off Phenomenon And Calculation Of Thermal Loads On A Methane Fuel Injector With Complex Geometry, Taj O. Mohieldin Jan 1991

Numerical Modeling Of Flame Lift-Off Phenomenon And Calculation Of Thermal Loads On A Methane Fuel Injector With Complex Geometry, Taj O. Mohieldin

Mechanical & Aerospace Engineering Theses & Dissertations

A numerical study has been conducted to analyze a fuel injector with three in-line cylinder geometry that has been adopted as a model for investigating the combustion phenomenon in the 8-Foot High Temperature Tunnel (HTT) combustor at the NASA Langley Research Center. The primary objective here is to analyze the flame lift-off phenomenon in the three cylinder fuel injector geometry in two-dimensions. The fluid mechanics model used in the analysis includes time-averaged Navier-Stokes equations that are employed in conjunction with a two-equation k-$\epsilon$ model for predicting the effects of turbulence. Calculations were performed with three chemistry models, namely fast chemistry, …


Micromechanics Of Granular Materials And Its Relation To Wave Velocity, Tarun K. Agarwal Jan 1991

Micromechanics Of Granular Materials And Its Relation To Wave Velocity, Tarun K. Agarwal

Civil & Environmental Engineering Theses & Dissertations

The macro characters of the granular materials depend upon micromechanical parameters such as the void ratio, particle shape, contact force distribution, and initial state of the fabric of the assembly. Since it is difficult to evaluate these internal parameters from laboratory experiments, a macro measure is desired which depends directly on these internal parameters. One such measure has been shown to be dynamic shear modulus but it was incomplete in predicting directional changes in the internal parameters. Therefore, it is hypothesized here that the complete elastic moduli matrix will have more direct information about the internal parameters, especially the dynamic …