Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Mechanical Engineering

Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman Aug 2022

Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman

Graduate Theses and Dissertations

Research on design thinking and design decision-making is vital for discovering and utilizing beneficial design patterns, strategies, and heuristics of human designers in solving engineering design problems. It is also essential for the development of new algorithms embedded with human intelligence and can facilitate human-computer interactions. However, modeling design thinking is challenging because it takes place in the designer’s mind, which is intricate, implicit, and tacit. For an in-depth understanding of design thinking, fine-grained design behavioral data are important because they are the critical link in studying the relationship between design thinking, design decisions, design actions, and design performance. Therefore, …


Constraint-Aware, Scalable, And Efficient Algorithms For Multi-Chip Power Module Layout Optimization, Imam Al Razi Aug 2022

Constraint-Aware, Scalable, And Efficient Algorithms For Multi-Chip Power Module Layout Optimization, Imam Al Razi

Graduate Theses and Dissertations

Moving towards an electrified world requires ultra high-density power converters. Electric vehicles, electrified aerospace, data centers, etc. are just a few fields among wide application areas of power electronic systems, where high-density power converters are essential. As a critical part of these power converters, power semiconductor modules and their layout optimization has been identified as a crucial step in achieving the maximum performance and density for wide bandgap technologies (i.e., GaN and SiC). New packaging technologies are also introduced to produce reliable and efficient multichip power module (MCPM) designs to push the current limits. The complexity of the emerging MCPM …


Understanding Thermal Comfort Impact And Air Movement Around Open Stairs Through The Use Of Cfd Modeling, Ethan Davidson May 2022

Understanding Thermal Comfort Impact And Air Movement Around Open Stairs Through The Use Of Cfd Modeling, Ethan Davidson

Graduate Theses and Dissertations

The air exchange between two floors of a building has an impact on thermal comfort. The present research attempts to quantify this impact and identify the contributing factors disrupting the thermal comfort on and around stairs. Various heating and cooling scenarios were analyzed, using CFD modeling, in a simple two-story building separated by a single staircase. The research examines a single building layout with a fixed inlet and outlet configuration. In addition, the study investigated the short-term impact on thermal comfort. As a result, the duration of the simulations varies from two and half minutes to ten minutes, consistent with …


Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo Dec 2021

Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo

Graduate Theses and Dissertations

The understanding of bubble dynamics during boiling is critical to the design of advanced heater surfaces to improve the boiling heat transfer. The stochastic bubble nucleation, growth, and coalescence processes have made it challenging to obtain mechanistic models that can predict boiling heat flux based on the bubble dynamics. Traditional boiling image analysis relies on the extraction of the dominant physical quantities from the images and is thus limited to the existing knowledge of these quantities. Recently, machine-learning-aided analysis has shown success in boiling crisis detection, heat flux prediction, real-time image analysis, etc., whereas most of the existing studies are …


Respiratory Compensated Robot For Liver Cancer Treatment: Design, Fabrication, And Benchtop Characterization, Mishek Jair Musa Dec 2021

Respiratory Compensated Robot For Liver Cancer Treatment: Design, Fabrication, And Benchtop Characterization, Mishek Jair Musa

Graduate Theses and Dissertations

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in the world. Radiofrequency ablation (RFA) is an effective method for treating tumors less than 5 cm. However, manually placing the RFA needle at the site of the tumor is challenging due to the complicated respiratory induced motion of the liver. This paper presents the design, fabrication, and benchtop characterization of a patient mounted, respiratory compensated robotic needle insertion platform to perform percutaneous needle interventions. The robotic platform consists of a 4-DoF dual-stage cartesian platform used to control the pose of a 1-DoF needle insertion module. The active …


Mission Profile Effects On Automotive Drivetrain Electronics Reliability: Modeling And Mitigation, Bakhtiyar Mohammad Nafis Dec 2021

Mission Profile Effects On Automotive Drivetrain Electronics Reliability: Modeling And Mitigation, Bakhtiyar Mohammad Nafis

Graduate Theses and Dissertations

The reliability of electronic devices is dependent upon the conditions to which they are subject. Temperature variations coupled with differences in thermal expansion between bonded materials results in thermomechanical stresses to build up, which can instigate failure in the interconnects or other critical regions. With the move towards electrification in the automotive industry, there is the increasingly important consideration of powertrain electronics reliability, the pertinent conditions being governed by the drive cycle or mission profile of the vehicle. The mission profile determines the power dissipated by the electronic devices, which determines the peak and mean temperature, temperature swing and the …


Material Detection With Thermal Imaging And Computer Vision: Potentials And Limitations, Jared Poe Jul 2021

Material Detection With Thermal Imaging And Computer Vision: Potentials And Limitations, Jared Poe

Graduate Theses and Dissertations

The goal of my masters thesis research is to develop an affordable and mobile infraredbased environmental sensoring system for the control of a servo motor based on material identification. While this sensing could be oriented towards different applications, my thesis is particularly interested in material detection due to the wide range of possible applications in mechanical engineering. Material detection using a thermal mobile camera could be used in manufacturing, recycling or autonomous robotics. For my research, the application that will be focused on is using this material detection to control a servo motor by identifying and sending control inputs based …


Computational Frameworks For Multi-Robot Cooperative 3d Printing And Planning, Laxmi Prasad Poudel Jul 2021

Computational Frameworks For Multi-Robot Cooperative 3d Printing And Planning, Laxmi Prasad Poudel

Graduate Theses and Dissertations

This dissertation proposes a novel cooperative 3D printing (C3DP) approach for multi-robot additive manufacturing (AM) and presents scheduling and planning strategies that enable multi-robot cooperation in the manufacturing environment. C3DP is the first step towards achieving the overarching goal of swarm manufacturing (SM). SM is a paradigm for distributed manufacturing that envisions networks of micro-factories, each of which employs thousands of mobile robots that can manufacture different products on demand. SM breaks down the complicated supply chain used to deliver a product from a large production facility from one part of the world to another. Instead, it establishes a network …


Numerical Simulations Of Directed Self-Assembly Methods In Di-Block Copolymer Films For Efficient Manufacturing Of Nanoscale Patterns With Long-Range Order, Joseph Hill Dec 2020

Numerical Simulations Of Directed Self-Assembly Methods In Di-Block Copolymer Films For Efficient Manufacturing Of Nanoscale Patterns With Long-Range Order, Joseph Hill

Graduate Theses and Dissertations

Directed self-assembly (DSA) of block copolymers (BCPs) has been shown as a viable method to achieve bulk fabrication of surface patterns with feature sizes smaller than those available through traditional photolithography. Under appropriate thermodynamic conditions, BCPs will self-assemble into ordered micro-domain morphologies, a desirable feature for many applications. One of the primary interests in this field of research is the application of thin-film BCPs to existing photolithography techniques. This “bottom-up” approach utilizes the self-assembled BCP nanostructures as a sacrificial templating layer in the lithographic process.

While self-assembly occurs spontaneously, extending orientational uniformity over centimeter-length scales remains a critical challenge. A …


Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner Dec 2019

Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner

Graduate Theses and Dissertations

This research focuses on the understanding, development, and additive manufacture of a 3D printed snake skin-inspired texture pattern. The design functionalities of snake skin were determined through the study of the snake species Python Regius otherwise known as the ball python. Each scale of a snake has hierarchical texture with hexagonal macro-patterns aligned on the ventral surface of the skin with overriding anisotropic micro textured patterns such as denticulations and fibrils. Using a laser-powder bed fusion (L-PBF) process, 420 stainless steel samples were 3D printed which closely resemble the above described directional texture of natural snake skin. This printed surface …


Microextrusion 3d Printing Of Optical Waveguides And Microheaters, Edidiong Nseowo Udofia Aug 2019

Microextrusion 3d Printing Of Optical Waveguides And Microheaters, Edidiong Nseowo Udofia

Graduate Theses and Dissertations

The drive for smaller and more compact devices presents several challenges in materials and fabrication strategies. Although photolithography is a well-developed method for creating microdevices, the disparate requirements in fabrication strategies, material choices, equipment and process complexities have limited its applications. Microextrusion printing (μEP) provides a promising alternative for microfabrication. Compared to the traditional techniques, the attractions lie in the wide range of printable material choice, greater design freedom, fewer processing steps, lower cost for customized production, and the plurality of compatible substrates. However, while extrusion-based 3D printing processes have been successfully applied at the macroscale, this seeming simplicity belies …


Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford May 2019

Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford

Graduate Theses and Dissertations

This thesis entails motor control system analysis, design, and optimization for the University of Arkansas NASA Robotic Mining Competition robot. The open-loop system is to be modeled and simulated in order to achieve a desired rapid, yet smooth response to a change in input. The initial goal of this work is to find a repeatable, generalized step-by-step process that can be used to tune the gains of a PID controller for multiple different operating points. Then, sensors are to be modeled onto the robot within a feedback loop to develop an error signal and to make the control system self-corrective …


Modeling Of Complex Parts For Industrial Waterjet Cleaning, Braden James May 2019

Modeling Of Complex Parts For Industrial Waterjet Cleaning, Braden James

Graduate Theses and Dissertations

Industrial high-pressure waterjet cleaning is common to many industries. The modeling in this paper functions inside a collaborative robotic framework for high mix, low volume processes where human robot collaboration is beneficial. Automation of pressure washing is desirable for economic and ergonomic reasons. An automated cleaning system needs path simulation and analysis to give the operator insight into the predicted cleaning performance of the system. In this paper, ablation, the removal of a substrate coating by waterjet, is modeled for robotic cleaning operations. The model is designed to work with complex parts often found in spray cleaning operations, namely parts …


Towards Environmentally Sustainable And Cost-Effective Food Distribution In The U.S., Jasmina Burek Dec 2018

Towards Environmentally Sustainable And Cost-Effective Food Distribution In The U.S., Jasmina Burek

Graduate Theses and Dissertations

Distribution centers (DCs) and supermarkets have an important role in food sustainability, but no previous research has accounted for their environmental impact. The purpose of this research was to assess environmental sustainability of grocery, perishables, and general merchandise DCs; to estimate food storing and retailing impact; and to provide cost-effective strategies to reduce DCs’ environmental impacts. The importance and relevance of the research is threefold: improving sustainability of DCs, food storing, and food retailing. The main method used in this research was the life cycle assessment (LCA) method. An initial study calculated environmental impacts of the Wal-Mart Stores, Inc. DCs, …


A Generative Statistical Approach For Data Classification In A Biologically Inspired Design Tool, Marvin Manuel Arroyo Rujano Dec 2018

A Generative Statistical Approach For Data Classification In A Biologically Inspired Design Tool, Marvin Manuel Arroyo Rujano

Graduate Theses and Dissertations

The objective of the research this thesis describes is to find a way to classify text-based descriptions of biological adaption to support Biologically Inspired design. Biologically inspired design is a fairly new field with ongoing research. There are different tools to assist designers and biologists in bio-inspired design. Some of the most common are BioTRIZ and AskNature. In recent years, more tools have been proposed to aid and make research in the field easier, for example, the Biologically Inspired Adaptive System Design (BIASD) tool. This tool was designed with the goal of helping designers in early design stages generate more …


The Effect Of Incorporating End-User Customization Into Additive Manufacturing Designs, Jonathan D. Ashley Dec 2018

The Effect Of Incorporating End-User Customization Into Additive Manufacturing Designs, Jonathan D. Ashley

Graduate Theses and Dissertations

In the realm of additive manufacturing there is an increasing trend among makers to create designs that allow for end-users to alter them prior to printing an artifact. Online design repositories have tools that facilitate the creation of such artifacts. There are currently no rules for how to create a good customizable design or a way to measure the degree of customization within a design. This work defines three types of customizations found in additive manufacturing and presents three metrics to measure the degree of customization within designs based on the three types of customization. The goal of this work …


Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut Dec 2018

Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut

Graduate Theses and Dissertations

The underlying physics of failure are critical in assessing the long term reliability of power packages in their intended field applications, yet traditional reliability determination methods are largely inadequate when considering thermomechanical failures. With current reliability determination methods, long test durations, high costs, and a conglomerate of concurrent reliability degrading threat factors make effective understanding of device reliability difficult and expensive. In this work, an alternative reliability testing apparatus and associated protocol was developed to address these concerns; targeting rapid testing times with minimal cost while preserving fatigue life prediction accuracy. Two test stands were fabricated to evaluate device reliability …


Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Graduate Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained. For larger molecules such as fluorescein isothiocyanate …


Exploring Energy, Comfort, And Building Health Impacts Of Deep Setback And Normal Occupancy Smart Thermostat Implementation, Zachary Ethan Alderman Dec 2017

Exploring Energy, Comfort, And Building Health Impacts Of Deep Setback And Normal Occupancy Smart Thermostat Implementation, Zachary Ethan Alderman

Graduate Theses and Dissertations

As smart thermostat adoption rates continue to increase, it becomes worthwhile to explore what unanticipated outcomes may result in their use. Specific attention was paid to smart thermostat impacts to deep setback and normal occupancy states in a variety of conditions while complying with the ventilation and temperature requirements of ASHRAE 90.2-2013. Custom weather models and occupancy schedules were generated to efficiently explore a combination of weather conditions, building constructions, and occupancy states. The custom modeling approach was combined with previous experimental data within the Openstudio graphics interface to the EnergyPlus building modeling engine. Results indicate smart thermostats add the …


3d Printed Pcu/Uhmwpe Polymeric Blends For Artificial Knee Meniscus, Raissa Araujo Borges Dec 2017

3d Printed Pcu/Uhmwpe Polymeric Blends For Artificial Knee Meniscus, Raissa Araujo Borges

Graduate Theses and Dissertations

3D printing was used to fabricate porous artificial knee meniscus material from biocompatible polymeric blends of polycarbonate-urethane (PCU) and ultra-high-molecular-weight polyethylene (UHMWPE) to enable “weep” lubrication that mimics the native meniscus. 3D printed and molded pure PCU, as well as molded PCU and UHMWPE, were used for comparison. Preliminary printing was done to evaluate the impact of process parameters on the results. The samples were subject to a variety of rotational oscillating friction and wear tests under simulated body fluid and loading conditions to replicate the natural motion of the knee. Results show that 3D printed PCU samples yielded a …


Developing Methods Of Obtaining Quality Failure Information From Complex Systems, Oladapo Olalekan Bello Aug 2017

Developing Methods Of Obtaining Quality Failure Information From Complex Systems, Oladapo Olalekan Bello

Graduate Theses and Dissertations

The complexity in most engineering systems is constantly growing due to ever-increasing technological advancements. This result in a corresponding need for methods that adequately account for the reliability of such systems based on failure information from components that make up these systems.

This dissertation presents an approach to validating qualitative function failure results from model abstraction details. The impact of the level of detail available to a system designer during conceptual stages of design is considered for failure space exploration in a complex system. Specifically, the study develops an efficient approach towards detailed function and behavior modeling required for complex …


Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn Dec 2016

Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn

Graduate Theses and Dissertations

Selective laser sintering (SLS) is one of the most popular 3D printing methods that uses a laser to pattern energy and selectively sinter powder particles to build 3D geometries. However, this printing method is plagued by slow printing speeds, high power consumption, difficulty to scale, and high overhead expense. In this research, a new 3D printing method is proposed to overcome these limitations of SLS. Instead of using a laser to pattern energy, this new method, termed selective resistive sintering (SRS), uses an array of microheaters to pattern heat for selectively sintering materials. Using microheaters offers significant power savings, significantly …


4d Printing Dielectric Elastomer Actuator Based Soft Robots, Jiyu Cai Aug 2016

4d Printing Dielectric Elastomer Actuator Based Soft Robots, Jiyu Cai

Graduate Theses and Dissertations

4D printing is an emerging technology that prints 3D structural smart materials that can respond to external stimuli and change shape over time. 4D printing represents a major manufacturing paradigm shift from single-function static structures to dynamic structures with highly integrated functionalities. Direct printing of dynamic structures can provide great benefits (e.g., design freedom, low material cost) to a wide variety of applications, such as sensors and actuators, and robotics. Soft robotics is a new direction of robotics in which hard and rigid components are replaced by soft and flexible materials to mimic mechanisms that works in living creatures, which …


Design, Fabrication, And Testing Of A 3d Printer Based Microfluidic System, Carlton A. Mcmullen Dec 2015

Design, Fabrication, And Testing Of A 3d Printer Based Microfluidic System, Carlton A. Mcmullen

Graduate Theses and Dissertations

A pneumatically actuated PDMS based microfluidic devices were designed and fabricated by soft-lithography. Two types of molds were fabricated out of different material for this experiment. The first mold, (device 1), was fabricated from a sheet of Polymethyl methacrylate (PMMA) material, similar to Plexiglas. The device features were micro-engraved onto the face of the material. The second mold, (device 2), was fabricated from the use of fused deposition modeling (FDM) 3D printing. The pumping efficiency of the PDMS devices was analyzed through the characterization of the micro-pumps flowrate with respect to the pumps driving pressure and the actuation frequency. Tested …


Three Dimensional Simulations Of Tornado Sheltering Effect Of Man-Made Structures, Piotr Gorecki May 2015

Three Dimensional Simulations Of Tornado Sheltering Effect Of Man-Made Structures, Piotr Gorecki

Graduate Theses and Dissertations

A three dimensional computational fluid dynamics (CFD) model was utilized to investigate tornado-like vortex interactions with wide man-made structures. The tornado-like wind profile was approximated using Rankine vortex model. By utilizing the CFD model, it was explained why tornadoes exhibit less damage on leeward side of large structures. During the preliminary stage of this study, a perpendicular vortex-prism interaction was analyzed. The prism height and the length were equal to the vortex core radius. The prism was also 12 times wider than the vortex core radius. During the vortex-prism interaction, the near-ground portion of the vortex was blocked by the …


Computer Modeling Of The Influence Of Structure Plan Areas On Tornado Forces, Nashmi Hassan M Alrasheedi May 2012

Computer Modeling Of The Influence Of Structure Plan Areas On Tornado Forces, Nashmi Hassan M Alrasheedi

Graduate Theses and Dissertations

The study of the conventional Straight Line (SL) wind flow dominates research into wind loads on structures. Most structure design takes into account only research into SL flow. Few researchers have studied tornado forces on buildings and attempted to distinguish between tornadic wind loads and SL flow loads. Using a computer simulation, this research addresses and distinguishes between the tornadic forces and SL forces on structures. In the numerical simulation, tornado forces and SL forces will be compared on large structure plan areas and on thin structure plan areas. Additionally this research investigates how the increase in the vortex strength …


Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark May 2012

Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark

Graduate Theses and Dissertations

Recent advances within the field of cube satellite technology has allowed for the possible development of a maneuver that utilizes a satellite's Low Earth Orbit (LEO) and increased atmospheric density to effectively use lift and drag to implement a noncoplanar orbital maneuver. Noncoplanar maneuvers typically require large quantities of propellant due to the large delta-v that is required. However, similar maneuvers using perturbing forces require little or no propellant to create the delta-v required. This research reported here studied on the effects of lift on orbital changes, those of noncoplanar types in particular, for small satellites without orbital maneuvering thrusters. …