Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Microstructure

2005

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Recovery Of The Grain Boundary Character Distribution Through Oblique Double-Sectioning, Brent L. Adams, David T. Fullwood, E. R. Homer Nov 2005

Recovery Of The Grain Boundary Character Distribution Through Oblique Double-Sectioning, Brent L. Adams, David T. Fullwood, E. R. Homer

Faculty Publications

This work was supported primarily by the MRSEC program of the National Science Foundation under DMR-0079996. A method for the retrieval of the complete grain boundary character distribution by oblique double-sectioning is proposed. The method, which is similar to the recovery of the orientation distribution from sets of incomplete pole-figures, is efficient and provides many advantages as compared to calibrated serial sectioning. As compared to standard stereological approaches, the new methodology retains the advantage of direct measurement of the grain boundary inclination parameters. Solutions to the fundamental equation of oblique double-sectioning are provided in the Fourier space, and some specifics …


Two-Dimensional Grain Boundary Percolation In Alloy 304 Stainless Steel, Brent L. Adams, John A. Basinger, David T. Fullwood, E. R. Homer Jun 2005

Two-Dimensional Grain Boundary Percolation In Alloy 304 Stainless Steel, Brent L. Adams, John A. Basinger, David T. Fullwood, E. R. Homer

Faculty Publications

This work was supported by the MRSEC program of the National Science Foundation under Award Number DMR-0079996. An experimentally-obtained percolation threshold for high-angle random grain boundary networks in alloy 304 stainless steel is compared to thresholds predicted by percolation theory. A discrepancy occurs in the two values (0.46 experimental and 0.65 theoretical). Possible reasons for the discrepancy are explored. The grain boundary network appears to be composed of two distinct sub-networks, with the 'outer' network acting as the dominant contributor to the percolating paths.