Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Dynamics

Discipline
Institution
Publication Year
Publication

Articles 1 - 16 of 16

Full-Text Articles in Mechanical Engineering

Understanding The Nonlinear Dynamics Governing Vertical-Lift Vehicles With Variable-Speed, Fixed Rotors, Stephanie Vavra, Micah Busboom, Aleea Stanford, Keegan Moore Apr 2022

Understanding The Nonlinear Dynamics Governing Vertical-Lift Vehicles With Variable-Speed, Fixed Rotors, Stephanie Vavra, Micah Busboom, Aleea Stanford, Keegan Moore

UNL Student Research Days Posters, Undergraduate

Problem: Traffic significantly limits travel in urban areas. • The NASA Urban Air Mobility Project is developing an air taxi as an alternative mean of transportation (Fig. 1).

Challenge: Operating rotors at different frequencies may cause the cabin to vibrate at high amplitudes. Such effects are currently unknown.

Objective: Understand the effect of variable speed rotors on passenger comfort.

From the reduced-order modeling simulations, it can be assumed that counteracting the rotor speed in-balances can reduce the displacement and vibrations experienced at the center of the wing. In other words, should a rotor not maintain its optimal operation speed, reducing …


Electrostatic Levitation: An Elegant Method To Control Mems Switching Operation, Mohammad Mousavi, Mohammad Alzgool, Shahrzad Towfighian Apr 2021

Electrostatic Levitation: An Elegant Method To Control Mems Switching Operation, Mohammad Mousavi, Mohammad Alzgool, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

This paper investigates the characteristics of a micro-switch that uses two side electrodes to open a normally closed switch. The side electrodes surround the xed electrode in the well-known gap-closing electrode configuration. The side electrodes can open a closed switch and be tuned to respond appropriately to outside forces. The combined electrode system dramatically improves the control of a standard gap-closing electrode configuration. In conventional switches, a DC voltage above a certain value closes the switch. To re-open the switch, the voltage difference is reduced to peel o the moving electrode. Currently the contact area is carefully designed to avoid …


Mitochondrial Dynamics And Respiration Within Cells With Increased Open Pore Cytoskeletal Meshes, David H. Jang, Sarah C. Seeger, Martha E. Grady, Frances S. Shofer, David M. Eckmann Dec 2017

Mitochondrial Dynamics And Respiration Within Cells With Increased Open Pore Cytoskeletal Meshes, David H. Jang, Sarah C. Seeger, Martha E. Grady, Frances S. Shofer, David M. Eckmann

Mechanical Engineering Faculty Publications

The cytoskeletal architecture directly affects the morphology, motility, and tensional homeostasis of the cell. In addition, the cytoskeleton is important for mitosis, intracellular traffic, organelle motility, and even cellular respiration. The organelle responsible for a majority of the energy conversion for the cell, the mitochondrion, has a dependence on the cytoskeleton for mobility and function. In previous studies, we established that cytoskeletal inhibitors altered the movement of the mitochondria, their morphology, and their respiration in human dermal fibroblasts. Here, we use this protocol to investigate applicability of power law diffusion to describe mitochondrial locomotion, assessment of rates of fission and …


Dc-Gain Layer-To-Layer Stability Criterion In Laser Metal Deposition Processes, Patrick M. Sammons, Douglas A. Bristow, Robert G. Landers Aug 2015

Dc-Gain Layer-To-Layer Stability Criterion In Laser Metal Deposition Processes, Patrick M. Sammons, Douglas A. Bristow, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In Laser Metal Deposition (LMD), a blown powder metal additive manufacturing process, functional metal parts are fabricated in a layer-by-layer fashion. In addition to the in-layer dynamics, which describe how the process evolves within a given layer, the additive-fabrication property of LMD creates a second set of dynamics which describe how the process evolves from layer-to-layer. While these dynamics, termed layer-to-layer dynamics, are coupled with both the in-layer dynamics and the process operating conditions, they are not widely considered in the modeling, process planning, or process control of LMD operations. Because of this, seemingly valid choices for process parameters can …


Control Of Fluid Dynamics By Nanoparticles In Laser Melting, Chao Ma, Lianyi Chen, Jiaquan Xu, Jingzhou Zhao, Xiaochun Li Mar 2015

Control Of Fluid Dynamics By Nanoparticles In Laser Melting, Chao Ma, Lianyi Chen, Jiaquan Xu, Jingzhou Zhao, Xiaochun Li

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Effective control of fluid dynamics is of remarkable scientific and practical significance. It is hypothesized that nanoparticles could offer a novel means to control fluid dynamics. In this study, laser melting was used to investigate the feasibility of tuning fluid dynamics by nanoparticles and possibly breaking existing limits of conventional laser processing techniques. Alumina nanoparticles reinforced nickel samples, fabricated through electrocodeposition, were used for laser melting experiments. Since the melt pool surface is controlled by the fluid dynamics, surface topographies were carefully studied to reveal the nanoparticle effect on the fluid dynamics. Characterizations of surface topographies and microstructures of pure …


Multi-Scale Visualization Of Molecular Architecture Using Real-Time Ambient Occlusion In Sculptor, Manuel Wahle, Willy Wriggers Jan 2015

Multi-Scale Visualization Of Molecular Architecture Using Real-Time Ambient Occlusion In Sculptor, Manuel Wahle, Willy Wriggers

Mechanical & Aerospace Engineering Faculty Publications

The modeling of large biomolecular assemblies relies on an efficient rendering of their hierarchical architecture across a wide range of spatial level of detail. We describe a paradigm shift currently under way in computer graphics towards the use of more realistic global illumination models, and we apply the so-called ambient occlusion approach to our opensource multi-scale modeling program, Sculptor. While there are many other higher quality global illumination approaches going all the way up to full GPU-accelerated ray tracing, they do not provide size-specificity of the features they shade. Ambient occlusion is an aspect of global lighting that offers great …


Measurement And Description Of Dynamics Required For In Vivo Surgical Robotics Via Kinematic Methods, Jacob G. Greenburg Aug 2013

Measurement And Description Of Dynamics Required For In Vivo Surgical Robotics Via Kinematic Methods, Jacob G. Greenburg

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

With the goal of improved recovery times and reduced trauma to the patient there has been a substantial shift in the medical community’s demand for minimally invasive surgical (MIS) techniques. With the standardization of MIS becoming more commonplace in the medical field there are still many improvements that are desired. Traditional, manual methods of these surgeries require multiple incisions on the abdomen for the tools and instruments to be inserted. The more recent demand has been to localize the incisions into what is being referred to as a Laparoendoscopic Single-Site (LESS) surgery. Furthermore, the manual instruments that are commonly used …


Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse Jan 2013

Background And Available Potential Energy In Numerical Simulations Of A Boussinesq Fluid, Shreyas S. Panse

Masters Theses 1911 - February 2014

In flows with stable density stratification, a portion of the gravitational potential energy is available for conversion to kinetic energy. The remainder is not and is called “background potential energy”. The partition of potential energy is analogous to the classical division of energy due to motion into its kinetic and internal components. Computing background and available potential energies is important for understanding stratified flows. In many numerical simulations, though, the Boussinesq approximations to the Navier-Stokes equations are employed. These approximations are not consistent with conservation of energy. In this thesis we re-derive the governing equations for a buoyancy driven fluid …


The Effect Of Leaves And Steel Support Cables On The Dynamic Properties Of Northern Red Oak (Quercus Rubra) With Co-Dominant Trunks, Mark Reiland Jan 2013

The Effect Of Leaves And Steel Support Cables On The Dynamic Properties Of Northern Red Oak (Quercus Rubra) With Co-Dominant Trunks, Mark Reiland

Masters Theses 1911 - February 2014

Natural frequency and damping ratio were measured for ten forest grown northern red oak trees with co-dominant trunks. Steels support cables were installed in the canopies of five of the sample trees prior to measurement. Free vibration testing was performed during periods when leaves were and were not present. An accelerometer mounted at the base of the co-dominant union measured the acceleration time history during the free vibration testing. Natural frequency was determined from the acceleration time history using power spectral density analysis. Damping ratios were calculated from the power spectral density plots using the half power bandwidth method.

Trees …


Development And Testing Of An Actively Adjustable Stiffness Mechanism, Eleazar Marquez, Robert Freeman, Horacio Vasquez Apr 2012

Development And Testing Of An Actively Adjustable Stiffness Mechanism, Eleazar Marquez, Robert Freeman, Horacio Vasquez

Mechanical Engineering Faculty Publications and Presentations

This study presents the comparison of the theoretical and experimental results of the performance of an adjustable stiffness mechanism. In particular, the use of redundant actuation is emphasized in the design of a one degree-of-freedom Watt II mechanism capable of independently controlling the effective stiffness without a change in equilibrium position. This approach is in contrast to spring mechanism designs unable to actively control the spring rate independent of deflection, and with potential applications in various types of suspension and assembly systems. Results indicate that two direct drive brush-type direct current motors are required to drive the redundantly actuated mechanism …


A Nonlinear Model For Wind-Induced Oscillations Of Trees, Lakshmi Narayanan Ramanujam Jan 2012

A Nonlinear Model For Wind-Induced Oscillations Of Trees, Lakshmi Narayanan Ramanujam

Masters Theses 1911 - February 2014

Ambient wind causes trees to oscillate. Wind-induced oscillations of trees constitute a fluid-structure interaction problem, which has been studied by many researchers from various points of view. However, there is yet a lot to be done. From an engineering point of view, the complex structure of trees, which are very different from man-made structures, as well as the highly nonlinear interaction between wind and tree, makes it a challenging task to predict the amplitude and frequency of the resulting oscillations. From a biological point of view, the influence of wind on photosynthesis as well as the growth and death of …


Dynamic Properties Of Railway Track And Its Components : A State-Of-The-Art Review, Sakdirat Kaewunruen, Alexander Remennikov Dec 2008

Dynamic Properties Of Railway Track And Its Components : A State-Of-The-Art Review, Sakdirat Kaewunruen, Alexander Remennikov

Faculty of Engineering - Papers (Archive)

Recent findings indicate one of major causes of damages, which is attributed to the resonant behaviours, in a railway track and its components. Basically, when a railway track is excited to generalised dynamic loading, the railway track deforms and then vibrates for certain duration. Dynamic responses of the railway track and its components are the key to evaluate the structural capacity of railway track and its components. If a dynamic loading resonates the railway track’s dynamic responses, its components tend to have the significant damage from excessive dynamic stresses. For example, a rail vibration could lead to defects in rails …


Impact Mechanics And High-Energy Absorbing Materials: Review, Pizhong Qiao, Mijia Yang, Florin Bobaru Oct 2008

Impact Mechanics And High-Energy Absorbing Materials: Review, Pizhong Qiao, Mijia Yang, Florin Bobaru

Department of Engineering Mechanics: Faculty Publications

In this paper a review of impact mechanics and high-energy absorbing materials is presented. We review different theoretical models (rigid-body dynamics, elastic, shock, and plastic wave propagation, and nonclassical or nonlocal models. and computational methods (finite-element, finite-difference, and mesh-free methods. used in impact mechanics. Some recent developments in numerical simulation of impact (e.g., peridynamics) and new design concepts proposed as high energy absorbing materials (lattice and truss structures, hybrid sandwich composites, metal foams, magnetorheological fluids, porous shape memory alloys. are discussed. Recent studies on experimental evaluation and constitutive modeling of strain rate-dependent polymer matrix composites are also presented. Impact damage …


Experimental And Finite Element Analysis Of Preloaded Bolted Joints Under Impact Loading, Brendan O'Toole, Kumarswamy Karpanan, Masoud Feghhi May 2006

Experimental And Finite Element Analysis Of Preloaded Bolted Joints Under Impact Loading, Brendan O'Toole, Kumarswamy Karpanan, Masoud Feghhi

Mechanical Engineering Faculty Research

One of the primary parameters in analyzing bolted joints is preload in the bolt. We have considered several possible preload modeling techniques to analyze the effect of preload on the dynamic response of the bolted joints. Five different methods of applying preload in the nonlinear finite element analysis are evaluated. These methods are “force on bolt and nut”, “force on bolt shank”, “interference fit”, “thermal gradient” and “initial stress method”. Explicit and implicit analyses are used for transient response and preload generation in bolt respectively. Time history and shock response spectrum are used to compare experimental and simulation results. Simulation …


Kinematic And Dynamic Analyses Of General Robots By Applying The C-B Notation-Ramip (Robot And Mechanism Integrated Program), Bernardo Donoso Apr 1992

Kinematic And Dynamic Analyses Of General Robots By Applying The C-B Notation-Ramip (Robot And Mechanism Integrated Program), Bernardo Donoso

FIU Electronic Theses and Dissertations

In this thesis, a new symbolic representation based on 4x4 homogeneous matrices, C-B (Cylindrical Coordinates - Bryant Angles) notation, has been applied to the kinematic and dynamic analyses of general robots, and a computer algorithm named RaMIP (Robot and Mechanism Integrated Program) has been developed on a Sun workstation for the design and analysis of robots and mechanisms. RaMIP can be used to model most industrial robots currently in use. It performs three-dimensional kinematic and dynamic analyses and takes advantage of the computational efficiency of C-B notation. The C-B notation allows the user to model an arbitrary mechanism consisting of …


Robust Nonlinear Control Of Brushless Dc Motors In The Presence Of Magnetic Saturation, N. Hemati, J. S. Thorp, Ming-Chuan Leu Jan 1990

Robust Nonlinear Control Of Brushless Dc Motors In The Presence Of Magnetic Saturation, N. Hemati, J. S. Thorp, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A robust control law is derived and examined for a direct-drive robot arm driven by a brushless DC motor (BLDCM). The complete dynamics of the motor and its interaction with the robot arm are accounted for. This is important, since in a direct-drive servo system the torque generated by the motor is directly transmitted to the load. Effects of magnetic saturation as well as reluctance variations are accounted for, in order to ensure accuracy. The effectiveness of the method is examined through computer simulations. The computational complexity of the overall control scheme is such that it can be readily used …