Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

3d Interdigitated Vertically Aligned Carbon Nanotube Electrodes For Electrochemical Impedimetric Biosensing, Benjamin J. Brownlee, Jonathan C. Claussen, Brian D. Iverson Sep 2020

3d Interdigitated Vertically Aligned Carbon Nanotube Electrodes For Electrochemical Impedimetric Biosensing, Benjamin J. Brownlee, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

Advances in nanomaterials, combined with electrochemical impedance spectroscopy (EIS), have allowed electrochemical biosensors to have high sensitivity while remaining labe-lfree, enabling the potential for portable diagnosis at the point-of-care. We report porous, 3D vertically aligned carbon nanotube (VACNT) electrodes with underlying chromium electrical leads for impedance-based biosensing. The electrodes are characterized by electrode height (5, 25, and 80 μm), gap width (15 and 25 μm), and geometry (interdigitated and serpentine) using scanning electron microscopy, cyclic voltammetry, and EIS. The protein streptavidin is functionalized onto VACNT electrodes for detection of biotin, as confirmed by fluorescence microscopy. EIS is used to measure …


Composite Gel Polymer Electrolytes For Extended Cyclability Of Lithium-Oxygen Batteries, Marcus Carlton Herndon Mar 2020

Composite Gel Polymer Electrolytes For Extended Cyclability Of Lithium-Oxygen Batteries, Marcus Carlton Herndon

FIU Electronic Theses and Dissertations

In lithium-oxygen (Li-O2) batteries, addressing challenges like electrode degradation, cell stability and electrolyte decomposition are key to creating more practical applications. Despite many attempts to minimize anode oxidation and cathode byproduct formation, the electrolyte remains the leading source for rapid capacity fading and poor cyclability in Li-O2batteries. Understanding the loss of functionality in electrolytes, carbon nanotube (CNT) fillers and redox mediators (RM), during cycling within Li-O2battery systems, could be the solution to prolonging battery lifetime. Determining the efficiency of these battery components and additives will push the medium towards lifelong, rechargeable and safe battery …


Electrical Properties And Electromagnetic Interference Shielding Effectiveness Of Interlayered Systems Composed By Carbon Nanotube Filled Carbon Nanofiber Mats And Polymer Composites, Claudia A. Ramirez-Herrera, Homero Gonzalez, Felipe De La Torre, Laura Benitez, Jose G. Cabanas-Moreno, Karen Lozano Feb 2019

Electrical Properties And Electromagnetic Interference Shielding Effectiveness Of Interlayered Systems Composed By Carbon Nanotube Filled Carbon Nanofiber Mats And Polymer Composites, Claudia A. Ramirez-Herrera, Homero Gonzalez, Felipe De La Torre, Laura Benitez, Jose G. Cabanas-Moreno, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

The demand for multifunctional requirements in aerospace, military, automobile, sports, and energy applications has encouraged the investigation of new composite materials. This study focuses on the development of multiwall carbon nanotube (MWCNT) filled polypropylene composites and carbon nanofiber composite mats. The developed systems were then used to prepare interlayered composites that exhibited improved electrical conductivity and electromagnetic interference (EMI) shielding efficiency. MWCNT-carbon nanofiber composite mats were developed by centrifugally spinning mixtures of MWCNT suspended in aqueous poly(vinyl alcohol) solutions. The developed nanofibers were then dehydrated under sulfuric acid vapors and then heat treated. Interlayered samples were fabricated using a nanoreinforced …


Cip2a Immunosensor Comprised Of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes Towards Point-Of-Care Oral Cancer Screening, Shaowei Ding, Suprem R. Das, Benjamin J. Brownlee, Kshama Parate, Taylor Davis, Loreen R. Stromberg, Edward K.L. Chan, Joseph Katz, Brian D. Iverson, Jonathan C. Claussen Oct 2018

Cip2a Immunosensor Comprised Of Vertically-Aligned Carbon Nanotube Interdigitated Electrodes Towards Point-Of-Care Oral Cancer Screening, Shaowei Ding, Suprem R. Das, Benjamin J. Brownlee, Kshama Parate, Taylor Davis, Loreen R. Stromberg, Edward K.L. Chan, Joseph Katz, Brian D. Iverson, Jonathan C. Claussen

Faculty Publications

Vertically aligned carbon nanotube array (VANTA) coatings have recently garnered much attention due in part to their unique material properties including light absorption, chemical inertness, and electrical conductivity. Herein we report the first use of VANTAs grown via chemical vapor deposition in a 2D interdigitated electrode (IDE) footprint with a high height-to-width aspect ratio (3:1 or 75:25 µm). The VANTA-IDE is functionalized with an antibody (Ab) specific to the human cancerous inhibitor PP2A (CIP2A)—a alivary oncoprotein that is associated with a variety of malignancies such as oral, breast, and multiple myeloma cancers. The resultant immunosensor is capable of detecting CIP2A …


An Experimental Study On Static And Dynamic Strain Sensitivity Of Embeddable Smart Concrete Sensors Doped With Carbon Nanotubes For Shm Of Large Structures, Andrea Meoni, Antonella D'Alessandro, Austin Downey, Enrique García-Macías, Marco Rallini, A. Luigi Materazzi, Luigi Torre, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini Mar 2018

An Experimental Study On Static And Dynamic Strain Sensitivity Of Embeddable Smart Concrete Sensors Doped With Carbon Nanotubes For Shm Of Large Structures, Andrea Meoni, Antonella D'Alessandro, Austin Downey, Enrique García-Macías, Marco Rallini, A. Luigi Materazzi, Luigi Torre, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini

Faculty Publications

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the …


Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger Aug 2009

Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger

Other Nanotechnology Publications

The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes …


Interfacial Energy Between Carbon Nanotubes And Polymers Measured From Nanoscale Peel Tests In The Atomic Force Microscope, Mark C. Strus, Camilo I. Cano, R. Byron Pipes, Cattien V. Nguyen, Arvind Raman Mar 2009

Interfacial Energy Between Carbon Nanotubes And Polymers Measured From Nanoscale Peel Tests In The Atomic Force Microscope, Mark C. Strus, Camilo I. Cano, R. Byron Pipes, Cattien V. Nguyen, Arvind Raman

Other Nanotechnology Publications

The future development of polymer composite materials with nanotubes or nanoscale fibers requires the ability to understand and improve the interfacial bonding at the nanotube-polymer matrix interface. In recent work [Strus MC, Zalamea L, Raman A, Pipes RB, Nguyen CV, Stach EA. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett 2008;8(2):544–50], it has been shown that a new mode in the Atomic Force Microscope (AFM), peeling force spectroscopy, can be used to understand the adhesive mechanics of carbon nanotubes peeled from a surface. In the present work, we demonstrate how AFM peeling force spectroscopy can be …


Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman Jan 2009

Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman

Birck and NCN Publications

Carbon nanotubes (CNTs) have gained increased interest in dynamic atomic force microscopy (dAFM) as sharp, flexible, conducting, nonreactive tips for high-resolution imaging, oxidation lithography, and electrostatic force microscopy. By means of theory and experiments we lay out a map of several distinct tapping mode AFM oscillation states for CNT tipped AFM cantilevers: namely, noncontact attractive regime oscillation, intermittent contact with CNT slipping or pinning, or permanent contact with the CNT in point or line contact with the surface while the cantilever oscillates with large amplitude. Each state represents fundamentally different origins of CNT-surface interactions, CNT tip-substrate dissipation, and phase contrast …


Processes For Nanomachining Using Carbon Nanotubes, Robert Ryan Vallance, Apparao M. Rao, M. Pinar Mengüç Dec 2003

Processes For Nanomachining Using Carbon Nanotubes, Robert Ryan Vallance, Apparao M. Rao, M. Pinar Mengüç

Mechanical Engineering Faculty Patents

Novel methods and devices for nanomachining a desired pattern on a surface of a conductive workpiece are disclosed. In one aspect, the method comprises using an electron beam emitted from one or more nanotubes to evaporate nanoscale quantities of material from the workpiece surface. The surface of the workpiece to be machined may be excited to a threshold energy to reduce the amount of power required to be emitted by the nanotube. In another aspect, a device is described for nanomachining a desired pattern on a surface of a conductive workpiece, comprising a vessel capable of sustaining a vacuum, a …