Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Hierarchical Based Classifcation Method Based On Fusion Ofgaussian Map Descriptors Foralzheimer Diagnosis Using T1‑Weighted Magnetic Resonance Imaging, Nourhan Zayed, Shereen E. Morsy, Inas A. Yassine Aug 2023

Hierarchical Based Classifcation Method Based On Fusion Ofgaussian Map Descriptors Foralzheimer Diagnosis Using T1‑Weighted Magnetic Resonance Imaging, Nourhan Zayed, Shereen E. Morsy, Inas A. Yassine

Mechanical Engineering

Alzheimer’s disease (AD) is considered one of the most spouting elderly diseases. In 2015, AD is reported the US’s sixth cause of death. Substantially, non-invasive imaging is widely employed to provide biomarkers supporting AD screening, diagnosis, and progression. In this study, Gaussian descriptors-based features are proposed to be efcient new biomarkers using Magnetic Resonance Imaging (MRI) T1-weighted images to diferentiate between Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and Normal controls (NC). Several Gaussian map-based features are extracted such as Gaussian shape operator, Gaussian curvature, and mean curvature. The aforementioned features are then introduced to the Support Vector Machine (SVM). …


Simulating The Growth Of Articular Cartilage Explants In A Permeation Bioreactor To Aid In Experimental Protocol Design, Timothy P. Ficklin, Andrew Davol, Stephen M. Klisch Apr 2009

Simulating The Growth Of Articular Cartilage Explants In A Permeation Bioreactor To Aid In Experimental Protocol Design, Timothy P. Ficklin, Andrew Davol, Stephen M. Klisch

Mechanical Engineering

Recently a cartilage growth finite element model (CGFEM) was developed to solve nonhomogeneous and time-dependent growth boundary-value problems (Davol et al., 2008, “A Nonlinear Finite Element Model of Cartilage Growth,” Biomech. Model. Mechanobiol., 7, pp. 295–307). The CGFEM allows distinct stress constitutive equations and growth laws for the major components of the solid matrix, collagens and proteoglycans. The objective of the current work was to simulate in vitro growth of articular cartilage explants in a steady-state permeation bioreactor in order to obtain results that aid experimental design. The steady-state permeation protocol induces different types of mechanical stimuli. When the specimen …


Articular Cartilage Tensile Integrity: Modulation By Matrix Depletion Is Maturation-Dependent, Anna Asanbaeva, Johnny Tam, Barbara L. Schumacher, Stephen M. Klisch, Koichi Masuda, Robert L. Sah Jun 2008

Articular Cartilage Tensile Integrity: Modulation By Matrix Depletion Is Maturation-Dependent, Anna Asanbaeva, Johnny Tam, Barbara L. Schumacher, Stephen M. Klisch, Koichi Masuda, Robert L. Sah

Mechanical Engineering

Articular cartilage function depends on the molecular composition and structure of its extracellular matrix (ECM). The collagen network (CN) provides cartilage with tensile integrity, but must also remodel during growth. Such remodeling may depend on matrix molecules interacting with the CN to modulate the tensile behavior of cartilage. The objective of this study was to determine the effects of increasingly selective matrix depletion on tensile properties of immature and mature articular cartilage, and thereby establish a framework for identifying molecules involved in CN remodeling. Depletion of immature cartilage with guanidine, chondroitinase ABC, chondroitinase AC, and Streptomyces hyaluronidase markedly increased tensile …


A Cartilage Growth Mixture Model With Collagen Remodeling: Validation Protocols, Stephen M. Klisch, Anna Asanbaeva, Sevan R. Oungoulian, Koichi Masuda, Eugene J.-Ma. Thonar, Andrew Davol, Robert L. Sah Jun 2008

A Cartilage Growth Mixture Model With Collagen Remodeling: Validation Protocols, Stephen M. Klisch, Anna Asanbaeva, Sevan R. Oungoulian, Koichi Masuda, Eugene J.-Ma. Thonar, Andrew Davol, Robert L. Sah

Mechanical Engineering

A cartilage growth mixture (CGM) model is proposed to address limitations of a model used in a previous study. New stress constitutive equations for the solid matrix are derived and collagen (COL) remodeling is incorporated into the CGM model by allowing the intrinsic COL material constants to evolve during growth. An analytical validation protocol based on experimental data from a recent in vitro growth study is developed. Available data included measurements of tissue volume, biochemical composition, and tensile modulus for bovine calf articular cartilage (AC) explants harvested at three depths and incubated for 13 days in 20% fetal borine serum …


A Growth Mixture Theory For Cartilage With Application To Growth-Related Experiments On Cartilage Explants, Stephen M. Klisch, Silvia S. Chen, Robert L. Sah, Anne Hoger Apr 2003

A Growth Mixture Theory For Cartilage With Application To Growth-Related Experiments On Cartilage Explants, Stephen M. Klisch, Silvia S. Chen, Robert L. Sah, Anne Hoger

Mechanical Engineering

In this paper, we present a growth mixture model for cartilage. The main features of this model are illustrated in a simple equilibrium boundary-value problem that is chosen to illustrate how a mechanical theory of cartilage growth may be applied to growth-related experiments on cartilage explants. The cartilage growth mixture model describes the independent growth of the proteoglycan and collagen constituents due to volumetric mass deposition, which leads to the remodeling of the composition and the mechanical properties of the solid matrix. The model developed here also describes how the material constants of the collagen constituent depend on a scalar …


A Growth Mixture Theory For Cartilage, Stephen M. Klisch, Robert L. Sah, Anne Hoger Nov 2000

A Growth Mixture Theory For Cartilage, Stephen M. Klisch, Robert L. Sah, Anne Hoger

Mechanical Engineering

In this paper we present a model of growth for cartilaginous tissues in which there exists a saturated solid matrix composed of multiple constituents that may grow and remodel independently of each other. Klisch and Hoger recently developed a general theory of volumetric growth for a mixture of ν-1 growing elastic materials and an inviscid fluid, which included a treatment of two special types of internal constraints that are relevant to cartilage. Here, that theory is specialized to construct a cartilage growth model. This theory allows the constituents of the solid matrix to grow independently of each other, and can …


A Special Theory Of Biphasic Mixtures And Experimental Results For Human Annulus Fibrosus Tested In Confined Compression, Stephen M. Klisch, Jeffrey C. Lotz Apr 2000

A Special Theory Of Biphasic Mixtures And Experimental Results For Human Annulus Fibrosus Tested In Confined Compression, Stephen M. Klisch, Jeffrey C. Lotz

Mechanical Engineering

A finite deformation mixture theory is used to quantify the mechanical properties of the annulus fibrosus using experimental data obtained from a confined compression protocol. Certain constitutive assumptions are introduced to derive a special mixture of an elastic solid and an inviscid fluid, and the constraint of intrinsic incompressibility is introduced in a manner that is consistent with results obtained for the special theory. Thirty-two annulus fibrosus specimens oriented in axial (n = 16) and radial (n = 16) directions were obtained from the middle-lateral portion of intact intervertebral discs from human lumbar spines and tested in a stress-relaxation protocol. …