Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Biomechanical Engineering

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 160

Full-Text Articles in Mechanical Engineering

Exoskeletons - Designing For Social Justice, Grace Cd Murphy Oct 2023

Exoskeletons - Designing For Social Justice, Grace Cd Murphy

College of Engineering Summer Undergraduate Research Program

Many engineering professionals believe that discussions surrounding diversity, equity, and inclusion (DEI), and social justice do not belong in engineering because engineering is supposed to be a neutral or objective field. Through an extensive review of the literature and a survey sent out to potential users, the need for DEI in engineering was examined. Many current engineering projects do not take into consideration social justice principles which leaves certain groups further marginalized and disempowered while empowering a select few. Engineering has the opportunity to be a field of service, but first risks and benefits must be weighed and the outcome …


Hierarchical Based Classifcation Method Based On Fusion Ofgaussian Map Descriptors Foralzheimer Diagnosis Using T1‑Weighted Magnetic Resonance Imaging, Nourhan Zayed, Shereen E. Morsy, Inas A. Yassine Aug 2023

Hierarchical Based Classifcation Method Based On Fusion Ofgaussian Map Descriptors Foralzheimer Diagnosis Using T1‑Weighted Magnetic Resonance Imaging, Nourhan Zayed, Shereen E. Morsy, Inas A. Yassine

Mechanical Engineering

Alzheimer’s disease (AD) is considered one of the most spouting elderly diseases. In 2015, AD is reported the US’s sixth cause of death. Substantially, non-invasive imaging is widely employed to provide biomarkers supporting AD screening, diagnosis, and progression. In this study, Gaussian descriptors-based features are proposed to be efcient new biomarkers using Magnetic Resonance Imaging (MRI) T1-weighted images to diferentiate between Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and Normal controls (NC). Several Gaussian map-based features are extracted such as Gaussian shape operator, Gaussian curvature, and mean curvature. The aforementioned features are then introduced to the Support Vector Machine (SVM). …


Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake May 2023

Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Atherosclerosis is the most prevalent pathology of cardiovascular disease with no known cure. Despite the many systemic risk factors for atherosclerosis, plaques do not form randomly in the vasculature. Instead, they form around bifurcations and the inner curvature of highly curving arterial segments that contain so-called disturbed blood flow that is low in magnitude and multidirectional over the cardiac cycle. Conversely, straight, non-bifurcated arterial segments that contain moderate-to-high and unidirectional (i.e., normal) blood flow are protected from plaque development. Thus, blood flow is a key regulator of atherosclerosis that may be able to be leveraged to develop new therapeutics. Towards …


Hybrid Fes-Exoskeleton Control: Using Mpc To Distribute Actuation For Elbow And Wrist Movements, Nathan Dunkelberger, Jeffrey Berning, Eric M. Schearer, Marcia K. O'Malley Apr 2023

Hybrid Fes-Exoskeleton Control: Using Mpc To Distribute Actuation For Elbow And Wrist Movements, Nathan Dunkelberger, Jeffrey Berning, Eric M. Schearer, Marcia K. O'Malley

Mechanical Engineering Faculty Publications

Introduction: Individuals who have suffered a cervical spinal cord injury prioritize the recovery of upper limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have the potential to assist this population by providing a portable, powered, and wearable device; however, realization of this combination of technologies has been challenging. In particular, it has been difficult to show generalizability across motions, and to define optimal distribution of actuation, given the complex nature of the combined dynamic system. Methods: In this paper, we present a hybrid controller using a model predictive control (MPC) formulation that combines the actuation of both …


Data-Driven Dynamic Motion Planning For Practical Fes-Controlled Reaching Motions In Spinal Cord Injury, Derek N.N. Wolf, Antonie J. Van Den Bogert, Eric M. Schearer Jan 2023

Data-Driven Dynamic Motion Planning For Practical Fes-Controlled Reaching Motions In Spinal Cord Injury, Derek N.N. Wolf, Antonie J. Van Den Bogert, Eric M. Schearer

Mechanical Engineering Faculty Publications

Functional electrical stimulation (FES) is a promising technology for restoring reaching motions to individuals with upper-limb paralysis caused by a spinal cord injury (SCI). However, the limited muscle capabilities of an individual with SCI have made achieving FES-driven reaching difficult. We developed a novel trajectory optimization method that used experimentally measured muscle capability data to find feasible reaching trajectories. In a simulation based on a real-life individual with SCI, we compared our method to attempting to follow naive direct-to-target paths. We tested our trajectory planner with three control structures that are commonly used in applied FES: feedback, feedforward-feedback, and model …


A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu Jan 2023

A Review Of Piezoelectric Footwear Energy Harvesters: Principles, Methods, And Applications, Bingqi Zhao, Feng Qian, Alexander Hatfield, Lei Zuo, Tian-Bing Xu

Mechanical & Aerospace Engineering Faculty Publications

Over the last couple of decades, numerous piezoelectric footwear energy harvesters (PFEHs) have been reported in the literature. This paper reviews the principles, methods, and applications of PFEH technologies. First, the popular piezoelectric materials used and their properties for PEEHs are summarized. Then, the force interaction with the ground and dynamic energy distribution on the footprint as well as accelerations are analyzed and summarized to provide the baseline, constraints, potential, and limitations for PFEH design. Furthermore, the energy flow from human walking to the usable energy by the PFEHs and the methods to improve the energy conversion efficiency are presented. …


3d-Printed Piezoelectric Porous Bioactive Scaffolds And Clinical Ultrasonic Stimulation Can Help In Enhanced Bone Regeneration, Prabaha Sikder, Phaniteja Nagaraju, Harsha P.S. Naganaboyina Nov 2022

3d-Printed Piezoelectric Porous Bioactive Scaffolds And Clinical Ultrasonic Stimulation Can Help In Enhanced Bone Regeneration, Prabaha Sikder, Phaniteja Nagaraju, Harsha P.S. Naganaboyina

Mechanical Engineering Faculty Publications

This paper presents a comprehensive effort to develop and analyze first-of-its-kind design-specific and bioactive piezoelectric scaffolds for treating orthopedic defects. The study has three major highlights. First, this is one of the first studies that utilize extrusion-based 3D printing to develop design-specific macroporous piezoelectric scaffolds for treating bone defects. The scaffolds with controlled pore size and architecture were synthesized based on unique composite formulations containing polycaprolactone (PCL) and micron-sized barium titanate (BaTiO3) particles. Second, the bioactive PCL-BaTiO3 piezoelectric composite formulations were explicitly developed in the form of uniform diameter filaments, which served as feedstock material for the fused filament fabrication …


Computational Simulations Of The Effects Of Gravity On Lymphatic Transport, Huabing Li, Huajian Wei, Timothy P. Padera, James W. Baish, Lance L. Munn Oct 2022

Computational Simulations Of The Effects Of Gravity On Lymphatic Transport, Huabing Li, Huajian Wei, Timothy P. Padera, James W. Baish, Lance L. Munn

Faculty Journal Articles

Physical forces, including mechanical stretch, fluid pressure, and shear forces alter lymphatic vessel contractions and lymph flow. Gravitational forces can affect these forces, resulting in altered lymphatic transport, but the mechanisms involved have not been studied in detail. Here, we combine a lattice Boltzmann-based fluid dynamics computational model with known lymphatic mechanobiological mechanisms to investigate the movement of fluid through a lymphatic vessel under the effects of gravity that may either oppose or assist flow. Regularly spaced, mechanical bi-leaflet valves in the vessel enforce net positive flow as the vessel walls contract autonomously in response to calcium and nitric oxide …


Atherogenic Potential Of Microgravity Hemodynamics In The Carotid Bifurcation: A Numerical Investigation, Philippe Sucosky, Varun Vinayak Kalaiarasan, Graham B. Quasebarth, Patricia Strack, Jason A. Shar Sep 2022

Atherogenic Potential Of Microgravity Hemodynamics In The Carotid Bifurcation: A Numerical Investigation, Philippe Sucosky, Varun Vinayak Kalaiarasan, Graham B. Quasebarth, Patricia Strack, Jason A. Shar

Faculty Open Access Publishing Fund Collection

Long-duration spaceflight poses multiple hazards to human health, including physiological changes associated with microgravity. The hemodynamic adaptations occurring upon entry into weightlessness have been associated with retrograde stagnant flow conditions and thromboembolic events in the venous vasculature but the impact of microgravity on cerebral arterial hemodynamics and function remains poorly understood. The objective of this study was to quantify the effects of microgravity on hemodynamics and wall shear stress (WSS) characteristics in 16 carotid bifurcation geometries reconstructed from ultrasonography images using computational fluid dynamics modeling. Microgravity resulted in a significant 21% increase in flow stasis index, a 22–23% decrease in …


Estimation Of Joint Moments During Turning Maneuvers In Alpine Skiing Using A Three Dimensional Musculoskeletal Skier Model And A Forward Dynamics Optimization Framework, Dieter Heinrich, Antonie J. Van Den Bogert, Werner Nachbauer Jun 2022

Estimation Of Joint Moments During Turning Maneuvers In Alpine Skiing Using A Three Dimensional Musculoskeletal Skier Model And A Forward Dynamics Optimization Framework, Dieter Heinrich, Antonie J. Van Den Bogert, Werner Nachbauer

Mechanical Engineering Faculty Publications

In alpine skiing, estimation of the joint moments acting onto the skier is essential to quantify the loading of the skier during turning maneuvers. In the present study, a novel forward dynamics optimization framework is presented to estimate the joint moments acting onto the skier incorporating a three dimensional musculoskeletal model (53 kinematic degrees of freedom, 94 muscles). Kinematic data of a professional skier performing a turning maneuver were captured and used as input data to the optimization framework. In the optimization framework, the musculoskeletal model of the skier was applied to track the experimental data of a skier and …


Antagonistic Co-Contraction Can Minimize Muscular Effort In Systems With Uncertainty, Anne D. Koelewijn, Antonie J. Van Den Bogert Jan 2022

Antagonistic Co-Contraction Can Minimize Muscular Effort In Systems With Uncertainty, Anne D. Koelewijn, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Muscular co-contraction of antagonistic muscle pairs is often observed in human movement, but it is considered inefficient and it can currently not be predicted in
simulations where muscular effort or metabolic energy are minimized. Here, we investigated the relationship between minimizing effort and muscular co-contraction
in systems with random uncertainty to see if muscular co-contraction can minimize effort in such system. We also investigated the effect of time delay in the muscle, by varying the time delay in the neural control as well as the activation time constant.We solved optimal control problems for a one-degree-of-freedom pendulum actuated by two identical …


In-Flow Dynamics Of An Area-Difference-Energy Spring-Particle Red Blood Cell Model On Non-Uniform Grids, Brendan Walsh, Fergal Boyle Jan 2022

In-Flow Dynamics Of An Area-Difference-Energy Spring-Particle Red Blood Cell Model On Non-Uniform Grids, Brendan Walsh, Fergal Boyle

Articles

In this paper the area-difference-energy spring-particle (ADE-SP) red blood cell (RBC) structural model developed by Chen and Boyle is coupled with a lattice Boltzmann flux solver to simulate RBC dynamics. The novel ADE-SP model accounts for bending resistance due to the membrane area difference of RBCs while the lattice Boltzmann flux solver offers reduced computational runtimes through GPU parallelisation and enabling the employment of non-uniform meshes. This coupled model is used to simulate RBC dynamics and predictions are compared with existing experimental measurements. The simulations successfully predict tumbling, tank-treading, swinging and intermittent behaviour of an RBC in shear flow, and …


Force-Feedback Design For Robotics: Bio-Based Design And Simulation, Husnain Khan, Zhou Zhang Dec 2021

Force-Feedback Design For Robotics: Bio-Based Design And Simulation, Husnain Khan, Zhou Zhang

Publications and Research

The great challenge for the Virtual Assembly Platform is how to make the users have the in-person feeling with the augmented tools. Hands are the most important organs that are used to provide touch feeling. In a real assembly scenario, the force from the components and tools will be feedback to the brain via the hands. Unfortunately, the virtual assembly failed to mimic the in-person scenarios since it will not provide such kind of feedback. As a result, the users’ real identities are lost. Then, the users’ slower-progressing wrong habits will prevent them from success in the future. Therefore, it …


Numerical Study Of Fully Coupled Fluid-Structure Interaction Of Stented Ureter By Varying The Stent Side-Holes, Erick Martinez, Ben Xu, Jianzhi Li, Yingchen Yang Oct 2021

Numerical Study Of Fully Coupled Fluid-Structure Interaction Of Stented Ureter By Varying The Stent Side-Holes, Erick Martinez, Ben Xu, Jianzhi Li, Yingchen Yang

Mechanical Engineering Faculty Publications and Presentations

Ureteral stents are a measure used for many medical issues involving urology, such as kidney stones or kidney transplants. The purpose of applying stents is to help relieve the urine flow while the ureter is either blocked or trying to close itself, which creates blockages. These ureteral stents, while necessary, cause pain and discomfort to patients due to them being a solid that moves around inside the patients’ body. The ureter normally moves urine to the bladder through peristaltic forces. Due to the ureter being a hyperelastic material, these peristaltic forces cause the ureter to deform easily, making it necessary …


Use Of Pressure-Measuring Insoles To Characterize Gait Parameters In Simulated Reduced-Gravity Conditions, Christian Ison, Connor Neilsen, Jessica Deberardinis, Mohamed B. Trabia, Janet S. Dufek Sep 2021

Use Of Pressure-Measuring Insoles To Characterize Gait Parameters In Simulated Reduced-Gravity Conditions, Christian Ison, Connor Neilsen, Jessica Deberardinis, Mohamed B. Trabia, Janet S. Dufek

Mechanical Engineering Faculty Research

Prior researchers have observed the effect of simulated reduced-gravity exercise. However, the extent to which lower-body positive-pressure treadmill (LBPPT) walking alters kinematic gait characteristics is not well understood. The purpose of the study was to investigate the effect of LBPPT walking on selected gait parameters in simulated reduced-gravity conditions. Twenty-nine college-aged volunteers participated in this cross-sectional study. Participants wore pressure-measuring insoles (Medilogic GmBH, Schönefeld, Germany) and completed three 3.5-min walking trials on the LBPPT (AlterG, Inc., Fremont, CA, USA) at 100% (normal gravity) as well as reduced-gravity conditions of 40% and 20% body weight (BW). The resulting insole data were …


Scalability Of The Size Of Patterns Drawn Using Tactile Hand Guidance, Dhanya Nair Jul 2021

Scalability Of The Size Of Patterns Drawn Using Tactile Hand Guidance, Dhanya Nair

Engineering Faculty Articles and Research

Haptic feedback for handwriting training has been extensively studied, but with primary focus on kinematic feedback. We provide vibrotactile feedback through a wrist worn sleeve to guide the user to recreate unknown patterns and study the impact of vibrational duration (1, 2, 3 seconds) on pattern scaling. User traces a line at 90° angles, while attempting to maintain a constant speed, in the direction of the motor activated till a different motor activation is perceived. Shape and size are two features of good letter formation. Study performed on three subjects showed the ability to utilize four vibrotactile motors to guide …


Handwriting Correction System Using Wearable Sleeve With Optimal Tactor Configuration, Dhanya Nair, Grant Stankaitis, Sean Duback, Robert Geoffrion, Justin B. Jackson Jul 2021

Handwriting Correction System Using Wearable Sleeve With Optimal Tactor Configuration, Dhanya Nair, Grant Stankaitis, Sean Duback, Robert Geoffrion, Justin B. Jackson

Engineering Faculty Articles and Research

Handwriting remains an elusive skill with practice worksheets being the common method of learning. Since these worksheets provide only visual feedback and no quantitative feedback, it can often be a challenge to improve. For children with learning disabilities, learning handwriting skills is one of the most difficult tasks. We propose a handwriting training system that uses off-the-shelf webcam, a pen tracking software and a haptic sleeve which provides active feedback to the user based on their deviation from the original pattern. The sleeve has 4 individual motors that vibrate at different intensities based on the direction (right, left, up or …


Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen Jun 2021

Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen

Articles

Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO2 emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and induction heating, can heal cracks with melted binder and aged binder rejuvenation, and the synergistic effect of the two technologies shows significant advantages in healing efficiency over the single self-healing method. This study explores the fatigue life extension prospect of the combined healing system in porous asphalt. To this aim, porous asphalt (PA) test specimens with …


A Model-Based Approach To Predict Neuromuscular Control Patterns That Minimize Acl Forces During Jump Landing, Dieter Heinrich, Antonie J. Van Den Bogert, Robert Csapo, Werner Nachbauer May 2021

A Model-Based Approach To Predict Neuromuscular Control Patterns That Minimize Acl Forces During Jump Landing, Dieter Heinrich, Antonie J. Van Den Bogert, Robert Csapo, Werner Nachbauer

Mechanical Engineering Faculty Publications

Jump landing is a common situation leading to knee injuries involving the anterior cruciate ligament (ACL) in sports. Although neuromuscular control is considered as a key injury risk factor, there is a lack of knowledge regarding optimum control strategies that reduce ACL forces during jump landing. In the present study, a musculoskeletal model-based computational approach
is presented that allows identifying neuromuscular control patterns that minimize ACL forces during jump landing. The approach is demonstrated for a jump landing maneuver in downhill skiing, which is one out of three main injury mechanisms in competitive skiing.


Foot Contact Dynamics And Fall Risk Among Children Diagnosed With Idiopathic Toe Walking, Rahul Soangra, Michael Shiraishi, Richard Beuttler, Michelle Gwerder, Lou Anne Boyd, Venkatesan Muthukumar, Mohamed Trabia, Afshin Aminian, Marybeth Grant-Beuttler Mar 2021

Foot Contact Dynamics And Fall Risk Among Children Diagnosed With Idiopathic Toe Walking, Rahul Soangra, Michael Shiraishi, Richard Beuttler, Michelle Gwerder, Lou Anne Boyd, Venkatesan Muthukumar, Mohamed Trabia, Afshin Aminian, Marybeth Grant-Beuttler

Electrical & Computer Engineering Faculty Research

Children that are diagnosed with Idiopathic Toe walking (cITW) are characterized by persistent toe-to-toe contacts. The objective of this study was to explore whether typical foot contact dynamics during walking predisposes cITW to a higher risk of falling. Twenty cITW and age-matched controls performed typical and toe walking trials. The gait parameters related to foot contact dynamics, vertical force impulses during stance, slip, and trip risk were compared for both groups. We found that cITW manifest less stable gait and produced significantly higher force impulses during push-off. Additionally, we found that cITW had a higher slip-initiation risk that was associated …


Biomechanics Of Head Impacts In An Unhelmeted Sport, Stephen Tiernan Jan 2021

Biomechanics Of Head Impacts In An Unhelmeted Sport, Stephen Tiernan

Doctoral

Concussion in sport is very common and often the injury is undetectable using CT and MRI scans. In addition, approximately 50% of concussions areunreported.The project initially investigated the suitability of a skin patch sensor and a head-band sensorfor the measurement of head impacts in unhelmeted sports. It was found that both were unsuitable due to large angular accelerationerrors. Thestudy then collaborated withCAMLab at Stanford University and 25 Mixed Martial Arts (MMA) athletes were fitted CAMLab’s validated instrumented mouthguard. 451 video confirmed impacts were recorded at 19 sparring and 11 competitive MMA events. Five concussions were diagnosed during the competitive events. …


Mechanism For The Unfolding Of The Top7 Protein In Steered Molecular Dynamics Simulations As Revealed By Mutual Information Analysis, Ognjen Perišić, Willy Wriggers Jan 2021

Mechanism For The Unfolding Of The Top7 Protein In Steered Molecular Dynamics Simulations As Revealed By Mutual Information Analysis, Ognjen Perišić, Willy Wriggers

Mechanical & Aerospace Engineering Faculty Publications

We employed mutual information (MI) analysis to detect motions affecting the mechanical resistance of the human-engineered protein Top7. The results are based on the MI analysis of pair contact correlations measured in steered molecular dynamics (SMD) trajectories and their statistical dependence on global unfolding. This study is the first application of the MI analysis to SMD forced unfolding, and we furnish specific SMD recommendations for the utility of parameters and options in the TimeScapes package. The MI analysis provided a global overview of the effect of perturbation on the stability of the protein. We also employed a more conventional trajectory …


Efficient Trajectory Optimization For Curved Running Using A 3d Musculoskeletal Model With Implicit Dynamics, Marlies Nitschke, Eva Dorschky, Dieter Heinrich, Heiko Schlarb, Bjoern M. Eskofier, Anne D. Koelewijn, Antonie J. Van Den Bogert Oct 2020

Efficient Trajectory Optimization For Curved Running Using A 3d Musculoskeletal Model With Implicit Dynamics, Marlies Nitschke, Eva Dorschky, Dieter Heinrich, Heiko Schlarb, Bjoern M. Eskofier, Anne D. Koelewijn, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Trajectory optimization with musculoskeletal models can be used to reconstruct measured movements and to predict changes in movements in response to environmental changes. It enables an exhaustive analysis of joint angles, joint moments, ground reaction forces, and muscle forces, among others. However, its application is still limited to simplified problems in two dimensional space or straight motions. The simulation of movements with directional changes, e.g. curved running, requires detailed three dimensional models which lead to a high-dimensional solution space. We
extended a full-body three dimensional musculoskeletal model to be specialized for running with directional changes. Model dynamics were implemented implicitly …


A Comprehensive Analysis Of Balance, Symmetry, And Center Of Mass In The Gait Cycle Of Transfemoral Amputees, Kayla T. Etienne Jul 2020

A Comprehensive Analysis Of Balance, Symmetry, And Center Of Mass In The Gait Cycle Of Transfemoral Amputees, Kayla T. Etienne

FIU Electronic Theses and Dissertations

The purpose of this thesis is to create a framework that assists in the transfemoral prosthesis fitting process by calculating balance and symmetry to quantify patient comfort with an understanding of bipedal locomotion and human anatomy. Three different software applications were used to compare (1) the body position during gait cycle, (2) the natural and amputee anatomies, (3) the natural and prosthetic legs, and (4) the equilibrium and torque movements of the hip, knee, and ankle joints. Models were created in Maya for analysis in Solidworks and MEL code evaluation with MatLab. The MatLab code tested combinations of joint degrees …


Geometric Iteration Of A Knee Prosthetic And Static Stress-Bearing Capacity, Alexander Wheeler Mar 2020

Geometric Iteration Of A Knee Prosthetic And Static Stress-Bearing Capacity, Alexander Wheeler

Honors Theses

The purpose of this study was to improve a prosthetic knee model in terms of size, weight, and biocompatibility. Several tests were run to determine its effectiveness in supporting static and quasistatic loads. The positions in which these tests were run include static upright standing, static one-knee 90 degree kneeling, static squatting at maximum flexion, and quasistatic midstride. These simulations were conducted to find areas of high stress and strain. These patterns were used to determine the maximum body weight a physical prosthetic could support. The material used to create the prosthetic was changed from AISI 316 stainless steel to …


A Dynamic Neural Network Designed Using Analytical Methods Produces Dynamic Control Properties Similar To An Analogous Classical Controller, Wade William Hilts, Nicholas Szczecinski, Roger Quinn, Alexander Hunt Jan 2020

A Dynamic Neural Network Designed Using Analytical Methods Produces Dynamic Control Properties Similar To An Analogous Classical Controller, Wade William Hilts, Nicholas Szczecinski, Roger Quinn, Alexander Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Human balance is achieved using many concurrent control loops that combine to react to changes in environment, posture, center of mass and other factors affecting stability. Though numerous engineering models of human balance control have been tested, no methods for porting these models to a neural architecture have been established. It is our hypothesis that the analytical methods we have developed, combined with classical control techniques will provide a reasonable starting point for developing dynamic neural controllers that can reproduce classical control capabilities. In previous work, we tested this hypothesis and demonstrated that a biologically-constrained neural controller that replicates human …


Cnn-Based Estimation Of Sagittal Plane Walking And Running Biomechanics From Measured And Simulated Inertial Sensor Data, Eva Dorschky, Marlies Nitschke, Christine F. Martindale, Antonie J. Van Den Bogert, Anne D. Koelewijn, Bjoern M. Eskofier Jan 2020

Cnn-Based Estimation Of Sagittal Plane Walking And Running Biomechanics From Measured And Simulated Inertial Sensor Data, Eva Dorschky, Marlies Nitschke, Christine F. Martindale, Antonie J. Van Den Bogert, Anne D. Koelewijn, Bjoern M. Eskofier

Mechanical Engineering Faculty Publications

Machine learning is a promising approach to evaluate human movement based on wearable sensor data. A representative dataset for training data-driven models is crucial to ensure that the model generalizes well to unseen data. However, the acquisition of sufficient data is time-consuming and often infeasible. We present a method to create realistic inertial sensor data with corresponding biomechanical variables by 2D walking and running simulations. We augmented a measured inertial sensor dataset with simulated data for the training of convolutional neural networks to estimate sagittal plane joint angles, joint moments, and ground reaction forces (GRFs) of walking and running. When …


An Extensive Set Of Kinematic And Kinetic Data For Individuals With Intact Limbs And Transfemoral Prosthesis Users, Seyed Abolfazl Fakoorian, Arash Roshanineshat, Poya Khalaf, Vahid Azimi, Daniel J. Simon, Elizabeth Hardin Jan 2020

An Extensive Set Of Kinematic And Kinetic Data For Individuals With Intact Limbs And Transfemoral Prosthesis Users, Seyed Abolfazl Fakoorian, Arash Roshanineshat, Poya Khalaf, Vahid Azimi, Daniel J. Simon, Elizabeth Hardin

Electrical and Computer Engineering Faculty Publications

This paper introduces an extensive human motion data set for typical activities of daily living. These data are crucial for the design and control of prosthetic devices for transfemoral prosthesis users. This data set was collected from seven individuals, including five individuals with intact limbs and two transfemoral prosthesis users. These data include the following types of movements: (1) walking at three different speeds; (2) walking up and down a 5-degree ramp; (3) stepping up and down; (4) sitting down and standing up. We provide full-body marker trajectories and ground reaction forces (GRFs) as well as joint angles, joint velocities, …


Estimation Of Gait Kinematics And Kinetics From Inertial Sensor Data Using Optimal Control Of Musculoskeletal Models, Eva Dorschky, Marlies Nitschke, Ann-Kristin Seifer, Antonie J. Van Den Bogert, Bjoern M. Eskofier Oct 2019

Estimation Of Gait Kinematics And Kinetics From Inertial Sensor Data Using Optimal Control Of Musculoskeletal Models, Eva Dorschky, Marlies Nitschke, Ann-Kristin Seifer, Antonie J. Van Den Bogert, Bjoern M. Eskofier

Mechanical Engineering Faculty Publications

Inertial sensing enables field studies of human movement and ambulant assessment of patients. However, the challenge is to obtain a comprehensive analysis from low-quality data and sparse measurements. In this paper, we present a method to estimate gait kinematics and kinetics directly from raw inertial sensor data performing a single dynamic optimization. We formulated an optimal control problem to track accelerometer and gyroscope data with a planar musculoskeletal model. In addition, we minimized muscular effort to ensure a unique solution and to prevent the model from tracking noisy measurements too closely. For evaluation, we recorded data of ten subjects walking …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …