Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan Jun 2021

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan

Master's Theses

Accurate mechanical analysis of composite structures is necessary for the prediction of laminate behavior. Cylindrical composite tubes are a mainstay in many structural applications. The fundamental design of circular composite cross-sections necessitates the development of a comprehensive composite lamination theory. A new analytical method is developed to characterize the behavior of thin-walled composite cylindrical tubes using a modified plate theory. A generated numerical solver can predict properties such as axial stiffness, bending stiffness, layer stresses, and layer strains in composite tubes subjected to combined mechanical loading and thermal effects. The model accounts for the curvature by transforming and translating the …


Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano May 2019

Effects Of Bio-Composites In Corrugated Sandwich Panels Under Edgewise Compression Loading, Jalen Christopher Mano

Master's Theses

Present day composite sandwich panels provide incredible strength. Their largest problem, however, is early bonding failure between the core and the skin. This is due to the low bonding surface area of present cores like honeycomb. Corrugated structures could provide a remedy for this with their much larger bonding surface area. Corrugated structures have extreme mechanical properties deeming them particularly useful in aerospace and automotive applications. However, previous research has shown that the stiffness of carbon fiber causes debonding and drastic failure when used as both a core and a skin. Bio-composites have properties that could strengthen the corrugated sandwich …


Manufacture Of Complex Geometry Component For Advanced Material Stiffness, David Russell Bydalek Mar 2018

Manufacture Of Complex Geometry Component For Advanced Material Stiffness, David Russell Bydalek

Master's Theses

The manufacture, laminate design, and modeling of a part with complex geometry are explored. The ultimate goal of the research is to produce a model that accurately predicts part stiffness. This is validated with experimental results of composite parts, which refine material properties for use in a final prototype part model. The secondary goal of this project is to explore manufacturing methods for improved manufacturability of the complex part. The manufacturing portion of the thesis and feedback into material model has incorporated a senior project team to perform research on manufacturing and create composite part to be used for experimental …


An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez Jun 2012

An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez

Master's Theses

This research studies the effects of a damage arrestment device embedded between a carbon fiber facesheet and foam core to find whether there is an increase in the structural integrity of the sandwich composites. Experimental and theoretical finite element analyses are implemented for two different composite sandwich geometries; plates and beams. Each structure consisted of the same loading criteria and was restricted to the same vibration fixture during the experiment. An accelerometer was placed on the composite plate to record the amplitude and the natural frequencies of the composite structure. Each composite specimen is then fixed to the surface of …


Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian May 2012

Advanced Design Optimization For Composite Structure: Stress Reduction, Weight Decrease And Manufacturing Cost Savings, Shayan Ahmadian

Master's Theses

An injection moldable chopped fiber composite actuator with detailed drawing and tolerances was designed within one year. A vendor was selected and a quote for injection molding tooling cost for production was obtained and the first prototype was built in addition of six months. The risks are identified and material characterization tests are proposed.

The objective of this project was redesigning an aluminum made actuator with a continuous fiber composite for weight saving purposes. After searching the literature and consulting with experts in the field it was concluded that manufacturing costs associated with continuous fiber composite are 3 times as …


An Investigation Of Initially Delaminated Composite Sandwich With Delamination Arrest Mechanism Under Buckling Loading, Tony D. Tran Dec 2010

An Investigation Of Initially Delaminated Composite Sandwich With Delamination Arrest Mechanism Under Buckling Loading, Tony D. Tran

Master's Theses

This thesis involves the development of a fiberglass-foam composite sandwich structure with the introduction of delamination arrestment keys; therefore, a study of an initially delaminated composite sandwich structure was the experimental analysis on multiple configurations in how the arrestment keys are placed.

The first part of this thesis research was to the experimental design and manufacturing of the composite sandwich plates. These plates were later cut down to the specific test dimensions and manufacturing processes for the composite sandwich plates and test specimens were created. The composite sandwich plates were manufactured using a vacuum resin infusion process. The dimensions of …


Composite Manufacturing Of Small Wind Turbine Blades- Utility Scale Methods Applied To Small Wind, Bryan Kyle Edwards Sep 2009

Composite Manufacturing Of Small Wind Turbine Blades- Utility Scale Methods Applied To Small Wind, Bryan Kyle Edwards

Master's Theses

Cal Poly, San Luis Obispo’s first wind turbine explores the methods and processes that are employed to manufacture utility scale wind turbines, and applies them to small scale wind turbines. The primary objective is to promote the development of small scale wind turbine blades in ways that resemble, as closely as possible, the construction and methods of utility scale turbine blade manufacturing. Vacuum infusion is employed to create a hollow, multi piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A “rapid prototyping” method is developed using high density foam molds that allows short cycle time …


Performance Analysis And Life Prediction For Small Wind Turbine Blades: A Wood Laminate Case Study, Christopher James Nosti Aug 2009

Performance Analysis And Life Prediction For Small Wind Turbine Blades: A Wood Laminate Case Study, Christopher James Nosti

Master's Theses

A detailed study of the fatigue life of wooden wind turbine blades for a new 10 kilowatt system was undertaken. A numerical model of the blades was created using the technical software package MATLAB in order to estimate the maximum stress occurring within the blade in response to changes in wind velocities based on a wind profile approximating the location where these turbines are expected to operate. The material properties of the wooden laminate were measured using an Instron tensile test machine and were found to be in line with published values. In parallel with this effort, a three dimensional …