Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Interface Engineering Of Materials For Energy And Biological Applications, Ardalan Chaichi Dec 2020

Interface Engineering Of Materials For Energy And Biological Applications, Ardalan Chaichi

LSU Doctoral Dissertations

Interface interactions are generally classified into solid-liquid, solid-gas, solid-vacuum, liquid-gas, light-matter and electron-matter categories. Surface morphological studies as well as surface chemical reactions can be studied in various types of complex systems thanks to technological advances in materials characterization methods. By employing interface engineering in different applications, it is possible to control electrical, chemical, mechanical, optical and biological properties of materials. Accordingly, we have applied interface engineering in three different areas of energy materials, biomaterials and surface imaging. As a result, firstly, we have introduced a high intensity light flash-based method on engineered substrates for delamination of reduced graphene oxide …


An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang Dec 2020

An Improved Foam Modeling Technique And Its Application To Petroleum Drilling And Production Practice, Yanfang Wang

LSU Doctoral Dissertations

Foam is one of the most common used multiphase fluid in Underbalanced Drilling (UBD) and Managed Pressure Drilling (MPD). Because of its low density, high capacity of lifting and carrying cuttings, low cost and compatibility with formations, foam has become more superior than the conventional drilling mud when depleted reservoir pressure, severe lost circulation, or unstable borehole are encountered. In general, the success of foam applications rely on the understanding of the fundamentals of foam rheology in downhole conditions.

Foam rheology has been studied for decades. Conventional foam rheological models such as Power Law, Bingham Plastic, Herschel-Bulkley to explain foam …


Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang Nov 2020

Centrifugal Microfluidic Platform For Solid-Phase-Extraction (Spe) And Fluorescence Detection Applications, Yong Zhang

LSU Doctoral Dissertations

Solid phase extraction (SPE) is a widely used method to separate and concentrate the target molecules in liquid mixture. Traditional SPE has to be conducted in the laboratory with professional equipment and skilled operators. The microfluidic and 3D printing technology have opened up the opportunity in developing miniaturized automatic instruments. The main contribution of this research is to integrate the SPE process on a novel centrifugal platform. Various valves are applied on the platform to help control the aqueous sample and reagents in the cartridge.

First, a centrifugal microfluidic platform was built for automatically detecting trace oil pollution in water. …


Methodologies For Improvement Of Metal Fatigue Life, Ali Haghshenas Aug 2020

Methodologies For Improvement Of Metal Fatigue Life, Ali Haghshenas

LSU Doctoral Dissertations

A methodology is proposed to identify the onset of crack initiation that utilizes the material damping. The damping is measured using the impulse excitation technique (IET). The damping is also used to correlate fatigue life of additively manufactured (AM) specimens to their damping characteristics. Results reveal that the damping value is inversely proportional to the fatigue life of the specimens.

To detect the damage accumulation and crack initiation in metals due to cyclic loading, another methodology based on the measurement of the surface roughness parameters is introduced. Results presented reveal that the evolution of the surface roughness parameters can be …


Development Of Water Coning Control Design Metrics In Naturally Fractured Reservoirs, Samir Prasun Jun 2020

Development Of Water Coning Control Design Metrics In Naturally Fractured Reservoirs, Samir Prasun

LSU Doctoral Dissertations

Naturally fractured reservoirs (NFRs) with bottom-water are known for their instant water breakthrough and severe water coning that reduces oil recovery. This is because water channels through the highly permeable fractures easily connecting the well to the aquifer bypassing the oil contained in the matrix. Remedial techniques such as producing below critical-oil rate, optimizing the well spacing and installing the downhole water sink (DWS)/ downhole water loop (DWL) technology, have already been successfully tested in single-porosity reservoirs (SPR). However, applicability of these techniques in NFRs are unknown since only a few studies have been performed on their feasibility in NFRs, …