Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 134

Full-Text Articles in Mechanical Engineering

Microscale Metal Forming: Mesoscopic Size Effect, Extrusion And Molding, Bin Zhang Mar 2019

Microscale Metal Forming: Mesoscopic Size Effect, Extrusion And Molding, Bin Zhang

LSU Doctoral Dissertations

The continuing trend of metallic device and product miniaturization has motivated studies on microscale metal forming technologies. A better understanding of materials’ mechanical response and deformation behavior is of importance for the design and operation of micro metal forming processes. In this dissertation, uniaxial compression testing was conducted on Al ring and pillar specimens with characteristic dimensions at meso to micro scales. The experimental data reveal inadequacies of the existing surface layer model and provides a baseline for delineating deformation mechanisms in micro metal forming operations. Microscale reverse extrusion experiment was carried out on Cu and Al rod specimens with ...


Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma Jan 2019

Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma

LSU Doctoral Dissertations

Conventional fuel testing device-CFR engine requires large quantities of fuels, which makes it unsuitable for research of small samples of fuels. This current study seeks to address this limitation by using an externally heated microcombustor as an alternative fuel testing device. Mainly three combustion behaviors have been observed inside a microcombustor: strong flames at higher flow rates, Flames with Repetitive Extinction and Ignition (FREI) at intermediate flow rates, and weak flames at marginal flow rates. In previous studies, weak combustion behavior has been proven suitable to study fuel properties from small samples of fuels. Microcombustor experiments typically rely on flame ...


Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu Nov 2018

Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu

LSU Doctoral Dissertations

Nowadays, the fast-increasing energy demand for efficient, sustainable and environmentally-friendly energy storage devices remains a significant and challenging issue. Lithium ion batteries (LIBs) have been widely used as commercial energy devices in portable electronics and also shown great promise in upcoming large-scale applications due to their advantages of environmental safety, efficiency in energy delivering and light weight. However, due to their limited capacity, energy densities and cycle ability, LIBs still need further improvement to expand their applications to a larger field, especially electric vehicle (EVs) and hybrid electric vehicles (HEVs), in which energy storage devices with large capacity and high ...


Microstructural Characterization Of Shear Transformation Zones And Modeling Indentation Size Effect In Amorphous Polymers, Leila Malekmotiei Jun 2018

Microstructural Characterization Of Shear Transformation Zones And Modeling Indentation Size Effect In Amorphous Polymers, Leila Malekmotiei

LSU Doctoral Dissertations

The first aim of this work is developing a procedure for experimental and analytical characterization of nano-scale microstructures which mediate large scale deformation in amorphous polymers. Glassy polymers are extensively used as high impact resistant, low density, and clear materials in industries. Nevertheless, their response under severe loading conditions is yet to be appropriately unraveled. Due to the lack of long-range order in the microstructures of glassy solids, their plastic deformation is different from that in crystalline solids. Shear Transformation Zones (STZs) are believed to be the main plasticity carriers in amorphous solids and defined as the localized atomic or ...


Experimental, Analytical, And Numerical Evaluation Of The Mechanical Properties Of The Brain Tissue, Aref Samadidooki Jun 2018

Experimental, Analytical, And Numerical Evaluation Of The Mechanical Properties Of The Brain Tissue, Aref Samadidooki

LSU Doctoral Dissertations

A true understanding of the mechanisms behind most of the brain diseases is still out of reach. For several years, the interest of scientists has been focused on the genetic and biological causes, however, recent studies unraveled the importance of the biomechanics of the brain growth, folding, impact resistance, and deformation on its pathological conditions. While, a wide range of different methods have been used for characterization of the mechanical properties of the brain at the tissue level, the obtained results from different studies are extremely scattered and sometimes in contrast to one another. Since the brain tissue is extremely ...


Formation Control Of Nonholonomic Multi-Agent Systems, Milad Khaledyan Jun 2018

Formation Control Of Nonholonomic Multi-Agent Systems, Milad Khaledyan

LSU Doctoral Dissertations

This dissertation is concerned with the formation control problem of multiple agents modeled as nonholonomic wheeled mobile robots. Both kinematic and dynamic robot models are considered. Solutions are presented for a class of formation problems that include formation, maneuvering, and flocking. Graph theory and nonlinear systems theory are the key tools used in the design and stability analysis of the proposed control schemes. Simulation and/or experimental results are presented to illustrate the performance of the controllers.

In the first part, we present a leader-follower type solution to the formation maneuvering problem. The solution is based on the graph that ...


Developing Nanopore Electromechanical Sensors With Transverse Electrodes For The Study Of Nanoparticles/Biomolecules, Mohammadsadegh Beheshti Apr 2018

Developing Nanopore Electromechanical Sensors With Transverse Electrodes For The Study Of Nanoparticles/Biomolecules, Mohammadsadegh Beheshti

LSU Doctoral Dissertations

This study concerns development of a technology of utilizing metallic nanowires for a sensing element in nanofluidic single molecular (nanoparticle) sensors formed in plastic substrates to detect the translocation of single molecules through the nanochannel. We aimed to develop nanofluidic single molecular sensors in plastic substrates due to their scalability towards high through and low cost manufacturing for point-of-care applications. Despite significant research efforts recently on the technologies and applications of nanowires, using individual nanowires as electric sensing element in nanofluidic bioanalytic devices has not been realized yet. This dissertation work tackles several technical challenges involved in this development, which ...


Microfluidic Technology And Application In Urinal Analysis, Jiwen Xiang Feb 2018

Microfluidic Technology And Application In Urinal Analysis, Jiwen Xiang

LSU Doctoral Dissertations

Microfluidic technology offers numerous advantages in minimizing and integrating the traditional assays. However, the lack of efficient control components of the microfluidic systems has been hindering the widely commercialization of the technology. The research work in this dissertation focused on the development of effective control components for microfluidic applications.

A linear peristaltic pump was firstly designed, fabricated, and tested for conventional microfluidics by synchronously compressing the microfluidic channel with a miniature cam-follower system in Chapter 2. The miniature cam-follower system and microfluidic chip was prototyped using three-dimensional (3D) printing technology and soft lithography technology. Results from experimental test showed that ...


Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam Dec 2017

Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam

LSU Doctoral Dissertations

The application of the Euler-Euler framework based Computational Fluid Dynamics (CFD) models for simulating the two-phase gas-liquid bubbly flow in down-flow bubble columns is discussed in detail. Emphasis is given towards the modelling and design optimization of a novel down-flow bubble column. The design features of this novel down-flow bubble column and its advantages over a conventional Plunging Jet down-flow bubble column are discussed briefly. Then, some of the present challenges in simulating a conventional Plunging Jet down-flow bubble column in the Euler-Euler framework is highlighted, and a sigmoid function based drag modification function is implemented to overcome those challenges ...


Nonlinear Model-Based Control For Neuromuscular Electrical Stimulation, Ruzhou Yang Nov 2017

Nonlinear Model-Based Control For Neuromuscular Electrical Stimulation, Ruzhou Yang

LSU Doctoral Dissertations

Neuromuscular electrical stimulation (NMES) is a technology where skeletal muscles are externally stimulated by electrodes to help restore functionality to human limbs with motor neuron disorder. This dissertation is concerned with the model-based feedback control of the NMES quadriceps muscle group-knee joint dynamics. A class of nonlinear controllers is presented based on various levels of model structures and uncertainties. The two main control techniques used throughout this work are backstepping control and Lyapunov stability theory.

In the first control strategy, we design a model-based nonlinear control law for the system with the exactly known passive mechanical that ensures asymptotical tracking ...


A Multi-Scale Approach For Modeling Shock Ignition And Burn Of Granular Hmx, Pratap Thamanna Rao Nov 2017

A Multi-Scale Approach For Modeling Shock Ignition And Burn Of Granular Hmx, Pratap Thamanna Rao

LSU Doctoral Dissertations

Deflagration-to-detonation transition (DDT) in confined, low-density granular HMX (65%-85% Theoretical Maximum Density, TMD) occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong burn-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting hot-spot formation within the micro-structure during pore collapse. In this study, meso-scale simulations of hot-spot formation in shock loaded granular HMX are used to guide the development ...


Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang Jan 2017

Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang

LSU Doctoral Dissertations

The design approach and validation of single phase senary refractory high entropy alloys (HEAs) MoNbTaTiVW and HfNbTaTiVZr were presented in first part of this dissertation. The design approach was to combine phase diagram inspection of available binary and ternary systems and Calculation of Phase Diagrams (CALPHAD) prediction. Experiments using X-ray diffraction and scanning electron microscopy techniques verified single phase microstructure in body centered cubic lattice for both alloys. The observed elemental segregation agrees well with the solidification prediction using Scheil model. The lattice constant, density and microhardness were measured to be 0.3216 nm, 4.954 GPa and 11.70 ...


Osteogenic Potential Of Poly (L-Lactic Acid) Scaffolds Prepared By Thermally Controlled Methods On Human Adipose Derived Stem Cells, Harish Chinnasami Shanmugam Jan 2017

Osteogenic Potential Of Poly (L-Lactic Acid) Scaffolds Prepared By Thermally Controlled Methods On Human Adipose Derived Stem Cells, Harish Chinnasami Shanmugam

LSU Doctoral Dissertations

Thermally Induced Phase Separation (TIPS) method was used to make porous three-dimensional PLLA scaffolds. The effect of imposed thermal profile during freezing of the PLLA in dioxane solution on the scaffold was characterized by their micro-structure, porosity (%), pore-sizes distribution and mechanical strength. The porosity (%) decreased considerably with increasing concentrations of PLLA in the solution, while a decreasing trend was observed with increasing cooling rates. The mechanical strength increases with increase in PLLA concentration and also with increase in the cooling rate for both types of solvents. Therefore, mechanical strength was increased by higher cooling rates while the porosity (%) remained relatively ...


Thermomechanical Modeling Of Polymerica Actuators, Qianxi Yang Jan 2017

Thermomechanical Modeling Of Polymerica Actuators, Qianxi Yang

LSU Doctoral Dissertations

In this dissertation, the application of smart polymers as actuators was investigated, with focuses on shape memory polymers and twisted-then-coiled artificial muscles. Thermomechanical models have been developed for various polymeric actuators, so as to facilitate interpretation of the underlying mechanisms and to provide guidance for future design. The classical one-way shape memory effect in amorphous shape memory polymers was first reproduced. The amorphous shape memory polymer was treated as a frozen-phase matrix with active-phase inclusions embedded in it. A phase evolution law was proposed from the physics perspective and the Mori-Tanaka approach was used to predict the effective mechanical properties ...


Analytical Solutions And Multiscale Creep Analysis Of Functionally Graded Cylindrical Pressure Vessels, Jasem Amjad Ahmed Jan 2017

Analytical Solutions And Multiscale Creep Analysis Of Functionally Graded Cylindrical Pressure Vessels, Jasem Amjad Ahmed

LSU Doctoral Dissertations

This study deals with the time-dependent creep analysis of functionally graded thick-cylinders under various thermal and mechanical boundary conditions. Firstly, exact thermoelastic stress, and iterative creep solutions for a heat generating and rotating cylindrical vessel made of functionally graded thermal and mechanical properties are proposed. Equations of equilibrium, compatibility, stress-strain, and strain-displacement relations are solved to obtain closed-form initial stress and strain solutions. It is found that material gradient indices have significant influences on thermoelastic stress profiles. For creep analysis, Norton’s model is incorporated into rate forms of the above-mentioned equations to obtain time-dependent stress and strain results using ...


On The Degradation Of Lubricating Grease, Asghar Rezasoltani Jan 2016

On The Degradation Of Lubricating Grease, Asghar Rezasoltani

LSU Doctoral Dissertations

A comprehensive literature review on physical and chemical degradation monitoring and life estimation models for lubricating greases is presented in chapter one. Degradation mechanisms for lubricating grease are categorized and described, and an extensive survey of the available empirical and analytical grease life estimation models including degradation monitoring standards and methods are presented. In chapter two, irreversible thermodynamic theory is employed to study the mechanical degradation of lubricating grease. A correlation between the mechanical degradation and entropy generation is established and the results are verified experimentally using a rheometer, a journal bearing test rig, and a modified grease worker machine ...


Thermophysical And Thermochemical Property Measurement And Prediction Of Liquid Metal Titanium Alloys With Applications In Additive Manufacturing, Jonathan Richard Raush Jan 2016

Thermophysical And Thermochemical Property Measurement And Prediction Of Liquid Metal Titanium Alloys With Applications In Additive Manufacturing, Jonathan Richard Raush

LSU Doctoral Dissertations

Accurate high-temperature thermophysical property data for liquid metals and alloys are important for simulation of laser-based 3D printing processes. To understand and better control such additive manufacturing processes, knowledge of density, viscosity, and surface tension of liquid metals and alloys versus composition and temperature is needed. Likewise, thermochemical property data information regarding alloys, including chemical activities and free energies relative to composition and temperature, aid in the understanding and development of phase data important in the material design process. Vacuum electrostatic levitation (ESL) is an important technique through which both thermophysical and thermochemical property measurements can be accomplished without physical ...


Design Of Surface Texture For The Enhancement Of Tribological Performance, Cong Shen Jan 2016

Design Of Surface Texture For The Enhancement Of Tribological Performance, Cong Shen

LSU Doctoral Dissertations

Surface texturing is a method of surface modification that fabricates micro patterns on the contacting surfaces to improve the tribological performance in sliding, lubricated system. It is found that the geometric design of textures has a significant influence on the performance of textured surfaces. Some important geometric parameters, such as the area ratio and the depth-over-diameter ratio, have been identified for textures in the form of circular dimples. The current study aims to improve the friction reduction effect of surface texturing by using textures with novel designs. Some new factors considered in the design of textures are: internal structure and ...


Numerical Studies Of Liquid-Liquid Segmented Flows In Square Microchannels Using A Front-Tracking Algorithm, Eamonn Daire Walker Jan 2015

Numerical Studies Of Liquid-Liquid Segmented Flows In Square Microchannels Using A Front-Tracking Algorithm, Eamonn Daire Walker

LSU Doctoral Dissertations

Liquid-liquid segmented flows in a square microchannel are investigated numerically using a hybrid front-tracking/front-capturing method. The code is found to be well-adapted to a large range of flow parameters, but droplet flows are limited by poor accuracy at Laplace number above 100 – 1000 and plug flows are limited by the code’s current inability to adequately model the flow in thin films at low capillary numbers. A Schwarz-Aitken acceleration technique is investigated as a means to reduce computation time, but is found not to be advantageous compared to the parallel multigrid formulation of the code. Numerical simulations are divided ...


Physics And Applications Of A Pdms Based Centrifugal Microfluidic System, Ziliang Cai Jan 2015

Physics And Applications Of A Pdms Based Centrifugal Microfluidic System, Ziliang Cai

LSU Doctoral Dissertations

The objective of this research work is to develop a centrifugal microfluidic system for general purposes based on microfabrication technologies including SU-8 photolithography, polydimethylsiloxane (PDMS) casting. The main contribution of this research is to integrate a flyball governor system into the polymer based centrifugal microfluidic platform. A series of function units are developed based on this unique mechanism. In the first part, three pinch valve systems were designed and tested. The first one is based on the magnetic force and the second one is on the basis of spring force and the last one is a membrane valve. All valving ...


Chemical Structure And Dynamics In Laminar Flame Propagation, Mohsen Ayoobi Jan 2015

Chemical Structure And Dynamics In Laminar Flame Propagation, Mohsen Ayoobi

LSU Doctoral Dissertations

The objective of this dissertation is to investigate fundamental aspects of premixed flame structures as well as flame dynamics that arise due to conjugate heat transfer in narrow channels. Laminar premixed combustion simulations in narrow 2D channels show that conjugate heat transfer allows for combustion of mixtures at small scales that are not flammable at normal conditions. To investigate the impact of conjugate heat transfer, preheated 1D cases with premixed H2/Air fuel are simulated for a wide range of operating conditions based on inlet temperature and equivalence ratio. For post-processing, Chemical Explosive Mode Analysis (CEMA, an eigen-analysis technique) is ...


On The Role Of Surface Roughness In Elastohydrodynamic Lubrication Of Tribological Components, Mohammad Masjedi Jan 2015

On The Role Of Surface Roughness In Elastohydrodynamic Lubrication Of Tribological Components, Mohammad Masjedi

LSU Doctoral Dissertations

The present dissertation investigates the effect of surface roughness in the elastohydrodynamic lubrication (EHL). Since many essential components of the machinery such as gears, rolling element bearings, cam-followers, and heavily loaded journal bearings operate under the mixed EHL condition, and given the fact that nearly all engineering surfaces are rough to some extent, there is a need for an extensive research which can realistically quantify the effect of the surface roughness in such applications. We thus seek to develop an applied engineering approach for the treatment of the mixed EHL for prediction of the performance of machinery. Both line-contact and ...


Molecular Dynamics Simulation Study Of Single Dna Nucleotides Transport Through Nanoslits, Kai Xia Jan 2015

Molecular Dynamics Simulation Study Of Single Dna Nucleotides Transport Through Nanoslits, Kai Xia

LSU Doctoral Dissertations

There is potential for flight time based DNA sequencing involving disassembly into individual nucleotides which would pass through a nanochannel with 2 or more detectors. Molecular dynamics simulation of electrophoretic motion of single DNA nucleotides through 3 nm wide hydrophobic slits was performed. Electric field strength (E) varied from 0.0 to 0.6 V/nm. Slit walls were smooth or had a roughness similar to nucleotide size. Multiple nucleotide-wall adsorptions occurred. The electric field did not influence the nucleotide adsorption and desorption mechanism for E ¡Ü 0.1 V/nm, but influenced nucleotide orientation relative to the field direction ...


Challenges Towards Structural Integrity And Performance Improvement Of Welded Structures, Mohammad Washim Dewan Jan 2015

Challenges Towards Structural Integrity And Performance Improvement Of Welded Structures, Mohammad Washim Dewan

LSU Doctoral Dissertations

Welding is a fabrication process that joint materials, is extensively utilized in almost every field of metal constructions. Heterogeneity in mechanical properties, metallurgical and geometrical defects, post-weld residual stresses and distortion due to non-linear welding processes are prime concerns for performance reduction and failures of welded structures. Consequently, structural integrity analysis and performance improvement of weld joints are important issues that must be considered for structural safety and durability under loading. In this study, an extensive experimental program and analysis were undertaken on the challenges towards structural integrity analysis and performance improvement of different welded joints. Two widely used welding ...


On The Thermally Induced Failure Of Rolling Element Bearings, Jafar Takabi Jan 2015

On The Thermally Induced Failure Of Rolling Element Bearings, Jafar Takabi

LSU Doctoral Dissertations

This dissertation is devoted to the investigation of thermally induced seizure of rolling element bearings. A comprehensive thermal model of the rolling element bearings is developed which can predict the operating temperature of the bearing components in a wide range of operating conditions. The validity of this thermal model is verified by comparing the simulation results with a set of experiments. The results of simulations reveal that the rotational speed, oil viscosity and cooling rate of the housing have a significant influence on the operating temperature of the rolling bearings. To provide detailed information about all of the contact forces ...


Healing-On-Demand Polymer Composites Based On Shape Memory Polyurethane Fibers And Polymeric Artificial Muscles, Pengfei Zhang Jan 2015

Healing-On-Demand Polymer Composites Based On Shape Memory Polyurethane Fibers And Polymeric Artificial Muscles, Pengfei Zhang

LSU Doctoral Dissertations

In this dissertation, the healing-on-demand polymer composites based on shape memory polyurethane fibers and artificial muscles are investigated, for understanding and developing a novel healing-on-demand composite so that it would be used for industrial applications that could heal structural-length scale damage and leaking autonomously, repeatedly, efficiently, timely, and molecularly. Firstly, the structural relaxation behavior of shape memory polyurethane (SMPU) fiber was studied by theoretical analysis and experimental test. Then, a self-healing composite based on cold-drawn short SMPU fiber was prepared and tested for evaluating its crack-healing performance. After that, polymer artificial muscle based healing-on-demand composite was developed and characterized. Based ...


Degradation And Fatigue Involving Dissipated Processes, Md Liakat Ali Jan 2015

Degradation And Fatigue Involving Dissipated Processes, Md Liakat Ali

LSU Doctoral Dissertations

Irreversible material degradation due to cyclic mechanical loading is investigated utilizing the concept of thermodynamic entropy, plastic strain energy, and temperature slope measurement. Uniaxial tension-compression and fully-reversed bending fatigue tests are performed over a wide range of loading conditions with metallic and composite materials subject to both constant- and variable-amplitude loading. A methodology is developed for the estimation of the fatigue fracture entropy (FFE) and fatigue toughness of metallic specimens in a rapid fashion. It is found that the FFE and the fatigue toughness of each material tested are within a small band. The value of FFE is found to ...


Fabrication And Characterization Of Miniaturized Components Based On Extruded Ceramic-Filled Polymer Blends, Khurshida Sharmin Jan 2015

Fabrication And Characterization Of Miniaturized Components Based On Extruded Ceramic-Filled Polymer Blends, Khurshida Sharmin

LSU Doctoral Dissertations

The objective of this work is to develop an improved manufacturing process for microstructured ceramic components that is based on co-extrusion. Co-extrusion of structured feedrods holds promise for development of multi-layered, functionally graded and/or textured structures. However, it requires a polymer binder that is difficult to remove before structures can be sintered to full density. A two-step debinding is introduced to eliminate debinding defects that are commonly observed in thermal debinding (TD). Cracking is a major issue due to a lack of pore spaces for outgassing of pyrolysis products in traditional TD. In two-step debinding, a soluble binder is ...


On An Effective Submodeling Procedure For Stresses Determined With Finite Element Analysis, Ajay Ashok Kardak Jan 2015

On An Effective Submodeling Procedure For Stresses Determined With Finite Element Analysis, Ajay Ashok Kardak

LSU Doctoral Dissertations

Submodeling can enable stress analysts using finite elements to focus analysis on a subregion containing the stress concentration of interest, with consequent computational savings. Such benefits are only truly realized if the boundary conditions on the edges of the subregion that were originally contained within the global region are sufficiently accurate. These boundary conditions are drawn from initial global finite element analysis (FEA), and consequently themselves have errors that in turn lead to errors in the stresses sought. When these last boundary-condition errors are controlled, and the discretization errors incurred by the FEA of ensuing submodels are also controlled, submodeling ...


Deposition And Characterization Of Ceramic Thin Films And A New Experimental Approach To Evaluate The Mechanical Integrity Of Film/Substrate Interfacial Layers, Yang Mu Jan 2015

Deposition And Characterization Of Ceramic Thin Films And A New Experimental Approach To Evaluate The Mechanical Integrity Of Film/Substrate Interfacial Layers, Yang Mu

LSU Doctoral Dissertations

Due to their corrosion resistance, high temperature stability, high strength, and high hardness, refractory ceramic thin films and coatings have been utilized for surface engineering of mechanical components and mechanical fabrication tools. Adhesion between ceramic thin films and coatings and the substrate is of critical concern for performance and life time of coated systems. In this dissertation, a custom designed and constructed ultra-high-vacuum (UHV) vapor phase deposition system was used for the preparation of ceramic thin films through low-pressure high-density plasma assisted physical vapor deposition (PVD) methods. Deposited thin films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD ...