Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Fabrication, Bonding, Assembly, And Testing Of Metal-Based Microchannel Devices, Fanghua Mei Jan 2009

Fabrication, Bonding, Assembly, And Testing Of Metal-Based Microchannel Devices, Fanghua Mei

LSU Doctoral Dissertations

Microsystem technologies are believed to be an important part of the contemporary technological foundation and are becoming a commercially significant specialty area in manufacturing. The design and fabrication of microscale engineering structures has the potential of generating revolutionary changes in many products over a wide range of industrial sectors. Metal-based microchannel heat exchangers (MHEs) promise high heat transfer coefficients together with mechanical robustness, and are of interest for a wide range of applications. Fabrication technologies capable of creating high-aspect-ratio microscale structures (HARMSs) in metals such as Cu at low cost and high throughput are of particular interest. Likewise, simple and …


Meso-Scale Heating Predictions For Weak Impact Of Granular Energetic Solids, Rohan Panchadhara Jan 2009

Meso-Scale Heating Predictions For Weak Impact Of Granular Energetic Solids, Rohan Panchadhara

LSU Doctoral Dissertations

An explicit, two-dimensional, Lagrangian finite and discrete element technique is formulated and used to computationally characterize meso-scale fluctuations in thermomechanical fields induced by low pressure deformation waves propagating through particulate energetic solids. Emphasis is placed on characterizing the relative importance of plastic and friction work as meso-scale heating mechanisms which may cause bulk ignition of these materials and their dependence on piston speed (vp ~ 50-500 m/s). The numerical technique combines conservation principles with a plane strain, thermoelastic-viscoplastic constitutive theory to describe deformation within the material meso-structure. An energy consistent, penalty based, distributed potential force method, coupled to a penalty …


State Feedback Control With Time Delay, Akshay Nareshraj Singh Jan 2009

State Feedback Control With Time Delay, Akshay Nareshraj Singh

LSU Doctoral Dissertations

In this thesis we start with an introduction to the theory of vibration control. We broadly classify the control methods into passive and active schemes. We introduce the problem of state feedback control and provide the classical solution in the form of Ackermann formula. We then identify the limitations of the classical approach and present the more elegant solution of partial pole assignment without spillover. We highlight the problem with model uncertainties and describe the method of pole assignment using data from measured receptances. This approach is extended for pole assignment for a linear vibrating system by using state feedback …


A Self Healing Smart Syntactic Foam Based Grid Stiffened Sandwich Structure, Manu Kuruvila John Jan 2009

A Self Healing Smart Syntactic Foam Based Grid Stiffened Sandwich Structure, Manu Kuruvila John

LSU Doctoral Dissertations

Syntactic foams are composite materials synthesized by dispersing microballoons in a polymeric, ceramic or metallic matrix. In the past three decades, syntactic foams have gained immense importance as a lightweight and damage-tolerant material when used in foam-cored sandwich structures. Because of the structural-length scale damages by low velocity impact such as tool drops, runway debris etc., sandwich structures usually have a very low residual structural capacity. Unfortunately, macro-length scale damage, in particular internal damage such as impact damage, is very difficult to repair. Therefore, there is a genuine need to develop impact-tolerant and self-healing syntactic foams which can be used …


Multiphase Flows In Polymer Microfluidic Systems, Namwon Kim Jan 2009

Multiphase Flows In Polymer Microfluidic Systems, Namwon Kim

LSU Doctoral Dissertations

Continuous delivery of segmented reagents using pressure-driven multiphase flow in microchannels is a promising technology for high throughput microfluidic bioassays. Separation and encapsulation of the target reagents with another inert fluid provide many advantages over single phase flow in microfluidic applications of biotechnology. In order to achieve these advantages and control these multiphase flows, it is necessary to understand their generation and transport characteristics as influenced by geometrical miniaturization, channel wall properties, the effects of surfactants and operating conditions. For gas-liquid two-phase flow, dry air and deionized water were driven into hot embossed PMMA microchannels with 200 μm square test …


A Modular Approach To High Throughput Microsystems, Pin-Chuan Chen Jan 2009

A Modular Approach To High Throughput Microsystems, Pin-Chuan Chen

LSU Doctoral Dissertations

A modular high throughput microsystem was developed using microfabrication technology and nucleic acid analysis. The purpose of developing this microsystem is to identify acute infectious disease and prevent contagious outbreak in a matter of time. This microsystem included three major components, a reagent distribution device, a 96 CFPCR array, and a multi-zone thermal system, to efficiently amplify specific DNA fragments to determine the disease status or precisely pinpoint a disease from multiple patients. Polymerase chain reaction (PCR) is the key component in the nucleic acid analysis for disease because it can be used to amplify interested DNA fragments by repeatedly …


A Multi-Function, Disposable, Microfluidic Module For Mutation Detection, Tae Yoon Lee Jan 2009

A Multi-Function, Disposable, Microfluidic Module For Mutation Detection, Tae Yoon Lee

LSU Doctoral Dissertations

Recognition of point mutations in a codon 12 of the K-ras gene, most frequently observed, is considered to be useful in the early diagnosis of several types of the human cancers. We have developed a multifunction, disposable, microfluidic module which detects low-abundant point mutations in human genomic DNA in modular architecture. Each functional component including a microfluidic PCR reactor, a passive diffusional micromixer reactor, and a microfluidic LDR reactor was separately designed and fabricated. Fluidic interconnects were also developed to make a fluidic passage between the functional components. Polycarbonate substrates were micro-molded, using hot embossing with micro-milled brass mold inserts …


Large Eddy Simulation Of Turbulent Premixed Combustion In Gas Turbines, Ashoke De Jan 2009

Large Eddy Simulation Of Turbulent Premixed Combustion In Gas Turbines, Ashoke De

LSU Doctoral Dissertations

An artificially Thickened Flame (TF) approach based on LES framework is used to model the turbulent premixed combustion in gas turbine combustors. A number of variants of the Thickened Flame approach including a modified version of TF model have been studied in details. In the TF model, the flame front is artificially thickened to resolve on LES computational grid. With this approach, reaction rate modeling does not require any ad-hoc closure assumptions. However, suitable modifications have to be made to compensate for flame thickening. To verify the predictive capability of the models, a stoichiometric methane-air flame on Bunsen burner type …