Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

A Total Life Cycle Approach For Developing Predictive Design Methodologies To Optimize Product Performance, Buddhika M. Hapuwatte, Ibrahim S. Jawahir Jan 2019

A Total Life Cycle Approach For Developing Predictive Design Methodologies To Optimize Product Performance, Buddhika M. Hapuwatte, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Sustainable products must be designed by considering how design decisions impact their total life cycle (TLC) sustainability content. Even more so important when designing products to incorporate the technological elements of sustainable manufacturing, the 6Rs (Reduce, Reuse, Recycle, Recover, Redesign and Remanufacture), to achieve Circular Economy (CE). This paper presents the preliminary work of an ongoing research project on developing a novel framework incorporating predictive models with TLC considerations. This unique approach develops and integrates models with associated risks, and optimizes for maximizing the sustainability benefits due to design decisions. Such predictive capability is extremely useful for process planning, where …


Process Sustainability Evaluation For Manufacturing Of A Component With The 6r Application, Ana E. Bonilla Hernández, Tao Lu, Tomas Beno, Claes Fredriksson, Ibrahim S. Jawahir Jan 2019

Process Sustainability Evaluation For Manufacturing Of A Component With The 6r Application, Ana E. Bonilla Hernández, Tao Lu, Tomas Beno, Claes Fredriksson, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Sustainability in manufacturing can be evaluated at product, process and system levels. The 6R methodology for sustainability enhancement in manufacturing processes includes: reduced use of materials, energy, water and other resources; reusing of products/components; recovery and recycling of materials/components; remanufacturing of products; and redesigning of products to utilize recovered materials/resources. Although manufacturing processes can be evaluated by their productivity, quality and cost, process sustainability assessment makes it a complete evaluation. This paper presents a 6R-based evaluation method for sustainable manufacturing in terms of specific metrics within six major metrics clusters: environmental impact, energy consumption, waste management, cost, resource utilization and …


Sustainable Production Through Balancing Trade-Offs Among Three Metrics In Flow Shop Scheduling, Amin Abedini, Wei Li, Fazleena Badurdeen, Ibrahim S. Jawahir Jan 2019

Sustainable Production Through Balancing Trade-Offs Among Three Metrics In Flow Shop Scheduling, Amin Abedini, Wei Li, Fazleena Badurdeen, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

In sustainable manufacturing, inconsistencies exist among objectives defined in triple-bottom-lines (TBL) of economy, society, and environment. Analogously, inconsistencies exist in flow shop scheduling among three objectives of minimizing total completion time (TCT), maximum completion time (MCT), and completion time variance (CTV), respectively. For continuous functions, the probability is zero to achieve the objectives at their optimal values, so is it at their worst values. Therefore, with inconsistencies among individual objectives of discrete functions, it is more meaningful and feasible to seek a solution with high probabilities that system performance varies within the …


Designing And Redesigning Products, Processes, And Systems For A Helical Economy, Ryan Bradley, Ibrahim S. Jawahir Jan 2019

Designing And Redesigning Products, Processes, And Systems For A Helical Economy, Ryan Bradley, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

The Circular Economy (CE) concept has promised to unlock trillions of dollars in business value while driving a significant reduction in the world’s resource consumption and anthropogenic emissions. However, CE mainly lives in ambiguity in the manufacturing domain because CE does not address the changes needed across all of the fundamental elements of manufacturing: products, processes, and systems. Conceptually, CE is grounded in the concept of closed-loop material flows that fit within ecological limits. This grounding translates into a steady state economy, a result that is not an option for the significant portion of the world living in poverty. Therefore, …


Rotary Friction Welding Versus Fusion Butt Welding Of Plastic Pipes – Feasibility And Energy Perspective, Ramsey F. Hamade, Tarek R. Andari, Ali H. Ammouri, Ibrahim S. Jawahir Jan 2019

Rotary Friction Welding Versus Fusion Butt Welding Of Plastic Pipes – Feasibility And Energy Perspective, Ramsey F. Hamade, Tarek R. Andari, Ali H. Ammouri, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

According to the Plastics Pipe Institute, butt fusion is the most widely used method for joining lengths of PE pipe and pipe to PE fittings “by heat fusion” (https://plasticpipe.org/pdf/chapter09.pdf). However, butt-welding is not energy-cognizant from the point of view of a phase-change fabrication method. This is because the source of heating is external (heater plate). The initial heating and subsequent maintenance at relatively high temperature (above 200 C for welding of high-density polyethylene pipe) is energy intensive. Rotary friction welding, on the other hand focuses the energy where and when as needed because it uses electric motor to generate mechanical …


Analysis Of Surface Integrity In Machining Of Aisi 304 Stainless Steel Under Various Cooling And Cutting Conditions, F. Klocke, B. Döbbeler, S. Lung, S. Seelbach, Ibrahim S. Jawahir May 2018

Analysis Of Surface Integrity In Machining Of Aisi 304 Stainless Steel Under Various Cooling And Cutting Conditions, F. Klocke, B. Döbbeler, S. Lung, S. Seelbach, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Recent studies have shown that machining under specific cooling and cutting conditions can be used to induce a nanocrystalline surface layer in the workspiece. This layer has beneficial properties, such as improved fatigue strength, wear resistance and tribological behavior. In machining, a promising approach for achieving grain refinement in the surface layer is the application of cryogenic cooling. The aim is to use the last step of the machining operation to induce the desired surface quality to save time-consuming and expensive post machining surface treatments. The material used in this study was AISI 304 stainless steel. This austenitic steel suffers …


Experimental Study On Surface Integrity Of Cryogenically Machined Ti-6al-4v Alloy For Biomedical Devices, M. Hardt, F. Klocke, B. Döbbeler, M. Binder, Ibrahim S. Jawahir Jan 2018

Experimental Study On Surface Integrity Of Cryogenically Machined Ti-6al-4v Alloy For Biomedical Devices, M. Hardt, F. Klocke, B. Döbbeler, M. Binder, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Titanium and its alloys are widely used in the biomedical sector. In this field, titanium and its alloys are the material of choice for biomedical devices such as hip and knee replacements. Usually, a Total Hip Replacement (THR) is based on four components, made out of different materials due to the material properties associated with the functional performance. One approach to lower the overall manufacturing costs and enhance the reliability of THR’s is to manufacture the prosthesis out of one material. The titanium alloy Ti-6Al-4V is, therefore, feasible as it exhibits better osseous integration compared to other metallic materials used …


Mapping And Integrating Value Creation Factors With Life-Cycle Stages For Sustainable Manufacturing, P. Bilge, S. Emec, G. Seliger, Ibrahim S. Jawahir Apr 2017

Mapping And Integrating Value Creation Factors With Life-Cycle Stages For Sustainable Manufacturing, P. Bilge, S. Emec, G. Seliger, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Instead of implementing each element individually, engineers must be aware of multiple interactions among all major value creation factors and their life-cycle stages. Interactions are analyzed by a set of factors and hierarchical levels within a production system based on empirical observations and described in analytical models. Such analyses and missing information about the current condition of the system and its parts remain limited to addressing specific aspects of interactions among factors and stages for multiple decision making. To build a case-based scope addressing the interactions among a set of factors and life-cycle stages, a comprehensive approach for mapping and …


Strategies For Value Creation Through Sustainable Manufacturing, Fazleena Badurdeen, Ibrahim S. Jawahir Mar 2017

Strategies For Value Creation Through Sustainable Manufacturing, Fazleena Badurdeen, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Making the business case and establishing strategic directions for sustainable manufacturing requires a collaborative effort. Strategic capabilities that can help create sustainable value for all stakeholders must be identified. Technologies and methodologies to provide these capabilities for implementation must then be developed, through public-private partnerships. This paper presents major business imperatives and strategic capabilities necessary to enable value creation through sustainable manufacturing identified based on extensive engagement with business leaders and industry professionals as well as academic experts and government agency representatives. The paper also presents a future vision for sustainable products, processes and systems that can be derived from …