Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Dissertations

New Jersey Institute of Technology

Ignition

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Experiment And Modeling : Ignition Of Aluminum Particles With A Co2 Laser, Salil Mohan Jan 2009

Experiment And Modeling : Ignition Of Aluminum Particles With A Co2 Laser, Salil Mohan

Dissertations

Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1 -50 …


Synthesis And Analysis Of Reactive Nanocomposites Prepared By Arrested Reactive Milling, Swati M. Umbrajkar May 2007

Synthesis And Analysis Of Reactive Nanocomposites Prepared By Arrested Reactive Milling, Swati M. Umbrajkar

Dissertations

Different types of reactive nanocomposites have been synthesized by Arrested Reactive Milling (ARM). The technical approach was to increase the interface area available for heterogeneous reaction between solid fuel and oxidizer components. Using aluminum as the main fuel and different metal oxides as oxidizers, highly energetic reactive nanocomposites with different degrees of structural refinement were synthesized. Specifically, stoichiometric Al-MoO3, Al-CuO, and Al-NaNO3 material systems were studied in detail.

The correlation of heterogeneous exothermic reactions occurring in the nanocomposite powders upon their heating at low rates and ignition events observed for the same powders heated rapidly was of …