Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Doctoral Dissertations

2016

Discipline
Keyword

Articles 1 - 10 of 10

Full-Text Articles in Mechanical Engineering

Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt Dec 2016

Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt

Doctoral Dissertations

The computational ability to accurately predict the conditions in an experiment under irradiation is a valuable tool in the operation of a research reactor whose scientific mission includes isotope production, materials irradiation, and neutron activation analysis. Understanding of different governing physics is required to ascertain satisfactory conditions within the experiment: the neutron transport behavior throughout the reactor and the coupled behavior of heat transfer, structural mechanics and fluid flow. Computational methods and tools were developed for robust numerical analysis of experiment behavior at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR), including fully-coupled thermo-mechanics in three plutonium-238 …


Impedance-Resolved Performance And Durability In Redox Flow Batteries, Alan Michael Pezeshki Dec 2016

Impedance-Resolved Performance And Durability In Redox Flow Batteries, Alan Michael Pezeshki

Doctoral Dissertations

The realization of redox flow batteries (RFBs) as a grid-scale energy solution depends on improving the performance and lifetime of the technology to decrease the high capital costs. The electrodes are a key component in the RFB; performance enhancement is often achieved through chemical or thermal treatments of commercially available porous carbon materials.

This dissertation uses impedance spectroscopy-based methods to gain insight into performance and durability in RFBs, enabling intelligent cell design. Initial work focused on understanding the impact of improved electrode and membrane properties on system performance. An accelerated stress test was then developed that can be used to …


Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo Dec 2016

Fundamental Studies Of Electrochemical Reactions And Microfluidics In Proton Exchange Membrane Electrolyzer Cells, Jingke Mo

Doctoral Dissertations

In electrochemical energy devices, including fuel cells, electrolyzers and batteries, the electrochemical reactions occur only on triple phase boundaries (TPBs). The boundaries provide the conductors for electros and protons, the catalysts for electrochemical reactions and the effective pathways for transport of reactants and products. The interfaces have a critical impact on the overall performance and cost of the devices in which they are incorporated, and therefore could be a key feature to optimize in order to turn a prototype into a commercially viable product. For electrolysis of water, proton exchange membrane electrolyzer cells (PEMECs) have several advantages compared to other …


Investigation Of Localized Performance And Gas Evolution In All-Vanadium Redox Flow Batteries Via In-Situ Distributed Diagnostic Techniques, Jason Thomas Clement Dec 2016

Investigation Of Localized Performance And Gas Evolution In All-Vanadium Redox Flow Batteries Via In-Situ Distributed Diagnostic Techniques, Jason Thomas Clement

Doctoral Dissertations

All-vanadium redox flow batteries (VRFBs) are an emerging grid-scale energy storage technology; however, enhancements in terms of performance, efficiency, durability, and cost are required before it can become commercially viable. These improvements are achievable through the development of advanced materials, superior architecture, and ultimately a deeper fundamental understanding of the influence of various phenomena and operational parameters on cell performance. There currently are a lack of in-situ experimental diagnostic techniques which can help in achieving this fundamental understanding.

Two separate distributed diagnostic techniques were developed in this work: in-plane current distribution, and neutron radiography. Localized current distribution measurements can identify …


Parametric Instability And Vibration Suppression Of Planetary Gear Transmissions Supported On Boundary Struts, Peng Guan Dec 2016

Parametric Instability And Vibration Suppression Of Planetary Gear Transmissions Supported On Boundary Struts, Peng Guan

Doctoral Dissertations

This dissertation explores the effects of discrete boundary strut properties on stability and vibration of the planetary gear transmission (PGT) driveline systems. Also, a robust output feedback control law is developed to actively control the PGT system vibrations. To better obtain boundary strut properties, a light-weight boundary strut design was developed for two popular boundary strut configurations by considering yield stress, buckling, and local buckling constraints. To facilitate analysis and development of the active control law, a comprehensive analytical PGT driveline system with elastic ring model, including gyroscopic effect and rotating-frame damping, is developed. The equation of motion of the …


Turbine Engine Rotor Blade Damage Detection Through The Analysis Of Vibration Of Stationary Components, Jon Rylan Cox Dec 2016

Turbine Engine Rotor Blade Damage Detection Through The Analysis Of Vibration Of Stationary Components, Jon Rylan Cox

Doctoral Dissertations

Rotor blade fault detection and health monitoring systems are crucial for gas turbine engine testing and evaluation. The most commonly used techniques involve monitoring blades directly using strain gages, or drilling optical access holes in the engine casing for non-contact probes to monitor blade deflection and vibration. In this work, less intrusive, indirect techniques for rotor blade fault detection are developed, based on the hypotheses that the vibratory response of stationary components excited by the rotor blade dynamic pressure pulse can be used to detect the presence, location, and severity of rotor blade damage and changes in rotor blade natural …


Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood Aug 2016

Lattice Boltzmann Methods For Wind Energy Analysis, Stephen Lloyd Wood

Doctoral Dissertations

An estimate of the United States wind potential conducted in 2011 found that the energy available at an altitude of 80 meters is approximately triple the wind energy available 50 meters above ground. In 2012, 43% of all new electricity generation installed in the U.S. (13.1 GW) came from wind power. The majority of this power, 79%, comes from large utility scale turbines that are being manufactured at unprecedented sizes. Existing wind plants operate with a capacity factor of only approximately 30%. Measurements have shown that the turbulent wake of a turbine persists for many rotor diameters, inducing increased vibration …


Adaptive Kernel Estimation For Enhanced Filtering And Pattern Classification Of Magnetic Resonance Imaging: Novel Techniques For Evaluating The Biomechanics And Pathologic Conditions Of The Lumbar Spine, Nicholas Vincent Battaglia May 2016

Adaptive Kernel Estimation For Enhanced Filtering And Pattern Classification Of Magnetic Resonance Imaging: Novel Techniques For Evaluating The Biomechanics And Pathologic Conditions Of The Lumbar Spine, Nicholas Vincent Battaglia

Doctoral Dissertations

This dissertation investigates the contribution the lumbar spine musculature has on etiological and pathogenic characteristics of low back pain and lumbar spondylosis. This endeavor necessarily required a two-step process: 1) design of an accurate post-processing method for extracting relevant information via magnetic resonance images and 2) determine pathological trends by elucidating high-dimensional datasets through multivariate pattern classification. The lumbar musculature was initially evaluated by post-processing and segmentation of magnetic resonance (MR) images of the lumbar spine, which characteristically suffer from nonlinear corruption of the signal intensity. This so called intensity inhomogeneity degrades the efficacy of traditional intensity-based segmentation algorithms. Proposed …


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Investigation Of Langmuir Probes In Non-Maxwellian Plasma Using Particle-In-Cell (Pic) Modeling, Densu Aktas Lister May 2016

Investigation Of Langmuir Probes In Non-Maxwellian Plasma Using Particle-In-Cell (Pic) Modeling, Densu Aktas Lister

Doctoral Dissertations

This dissertation explores the development of a capability for simulating the plasma dynamics of Langmuir probes (LP) in complex plasmas where the velocity distributions are non-equilibrium and the electron energy spectrum is non-Maxwellian with respect to laboratory and space experiments. The results of this investigation are interpreted to give recommendations for design and use of LPs. This work is conducted using computational techniques to create the exact plasma conditions of the experimental testing environments. The investigations address the following topics:

  • development of a technique to model non-Maxwellian physics,
  • modification of a baseline-technique and optimization of it for this application,
  • creation …