Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul Aug 2021

Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul

Doctoral Dissertations

Vanadium redox flow batteries are a promising large-scale energy storage technology, but a number of challenges must be overcome for commercial implementation. At the cell level, mass transport contributes significantly to performance losses, limiting VRFB performance. Therefore, understanding mass transport mechanisms in the electrode is a critical step to mitigating such losses and optimizing VRFBs.

In this study, mass transport mechanisms (e.g. convection, diffusion) are investigated in a VRFB test bed using a strip cell architecture, having 1 cm2 active area. It is found that diffusion-dominated cells have large current gradients; convection-dominated cells have relatively uniform current distribution from …


Utility Scale Building Energy Modeling And Climate Impacts, Brett C. Bass May 2021

Utility Scale Building Energy Modeling And Climate Impacts, Brett C. Bass

Doctoral Dissertations

Energy consumption is steadily increasing year over year in the United States (US). Climate change and anthropogenically forced shifts in weather have a significant impact on energy use as well as the resilience of the built environment and the electric grid. With buildings accounting for about 40% of total energy use in the US, building energy modeling (BEM) at a large scale is critical. This work advances that effort in a number of ways. First, current BEM approaches, their ability to scale to large geographical areas, and global climate models are reviewed. Next, a methodology for large-scale BEM is illustrated, …


Characterization Of Near Isothermal Compression And Expansion For Energy Storage, Saiid Kassaee May 2021

Characterization Of Near Isothermal Compression And Expansion For Energy Storage, Saiid Kassaee

Doctoral Dissertations

As the global share of electricity generation from intermittent renewable energy sources increases, developing efficient and scalable electricity storage technologies becomes critical to modernizing the grid, matching the supply and demand, and raising the capacity factor of renewable generation. The Ground-Level Integrated Diverse Energy Storage (GLIDES) is an efficient energy storage technology invented at Oak Ridge National Laboratory (ORNL). GLIDES stores energy by compressing gas using a liquid piston in pressure vessels benefiting from employing hydraulic turbomachinery which are more efficient than gas turbomachinery. Therefore, GLIDES has higher round-trip efficiency (RTE) than Compressed Air Energy Storage (CAES). Since GLIDES employs …


Experimental Investigation Of Spray Cooling/Heating Of A Near-Isothermal Hydro-Pneumatic Energy Storage System, Saiid Kassaee May 2021

Experimental Investigation Of Spray Cooling/Heating Of A Near-Isothermal Hydro-Pneumatic Energy Storage System, Saiid Kassaee

Masters Theses

Proposing experimental investigation of spray cooling/heating of a near-isothermal, scalable, efficient, high density, hydro-pneumatic integrated energy storage system; capable of spray cooling/heating during gas compression/expansion and capable of excess heat integration. The invented Ground-Level Integrated Diverse Energy Storage (GLIDES) is an energy storage technology capable of storing energy in high-pressure vessel using hydro-pneumatic concept. Indicated roundtrip efficiencies of 98% can be reached using the proposed technology marking an isothermal compression/expansion energy storage.