Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Mechanical Engineering

Computational Wave Field Modeling Using Sequential Mapping Of Poly-Crepitus Green’S Function In Anisotropic Media, Sajan Shrestha Jan 2017

Computational Wave Field Modeling Using Sequential Mapping Of Poly-Crepitus Green’S Function In Anisotropic Media, Sajan Shrestha

Theses and Dissertations

In this thesis, a meshless semi-analytical computational method is presented to compute the ultrasonic wave field in the generalized anisotropic material while understanding the physics of wave propagation in detail. To understand the wave-damage interaction in an anisotropic material, it is neither feasible nor cost-effective to perform multiple experiments in the laboratory. Hence, recently the computational nondestructive evaluation (CNDE) received much attention to performing the NDE experiments in a virtual environment. In this thesis, a fundamental framework is constructed to perform the CNDE experiment of a thick composite specimen in a Pulse-Echo (PE) mode. To achieve the target, the following ...


Methods For Determining Grease Service Levels In An Ah-64d Intermediate Gearbox Using On-Board Sensors, Travis Steven Edwards Jan 2015

Methods For Determining Grease Service Levels In An Ah-64d Intermediate Gearbox Using On-Board Sensors, Travis Steven Edwards

Theses and Dissertations

The intermediate gearbox (IGB) on the AH-64D was chosen as the subject for this study based on the persistent grease leaks that require grounding aircraft. The aircraft is not currently equipped with a method of detecting grease loss during flight, so techniques for analyzing the usefulness of old metrics and possible new techniques can be tested. The main objective of this study is to use the aircraft’s on-board sensors to develop a method of determining the lubrication level of the IGB. Currently, the most reliable method for detecting a fault on the aircraft is through the use of vibration-based ...


There Can Be Turbulence In Microfluidics At Low Reynolds Number, Guiren Wang, F. Yang, Wei Zhao Jan 2014

There Can Be Turbulence In Microfluidics At Low Reynolds Number, Guiren Wang, F. Yang, Wei Zhao

Faculty Publications

Turbulence is commonly viewed as a type of macroflow, where the Reynolds number (Re) has to be sufficiently high. In microfluidics, when Re is below or on the order of 1 and fast mixing is required, so far only chaotic flow has been reported to enhance mixing based on previous publications since turbulence is believed not to be possible to generate in such a low Re microflow. There is even a lack of velocimeter that can measure turbulence in microchannels. In this work, we report a direct observation of the existence of turbulence in microfluidics with Re on the order ...


Sr2Fe1.5Mo0.5O6 As Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells With La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Guoliang Xiao, Qiang Liu, Fei Zhao, Lei Zhang, Changrong Xia, Fanglin Chen Mar 2011

Sr2Fe1.5Mo0.5O6 As Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells With La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Guoliang Xiao, Qiang Liu, Fei Zhao, Lei Zhang, Changrong Xia, Fanglin Chen

Faculty Publications

The performance of Sr2Fe1.5Mo0.5O6 (SFMO) as a cathode material has been investigated in this study. The oxygen ionic conductivityof SFMO reaches 0.13 S cm-1 at 800°C in air. The chemical diffusion coefficient (Dchem) and surface exchange constant (kex) of SFMO at 750°C are 5.0 x 10-6 cm2 s-1 and 2.8 x 10-5 cm s-1, respectively, suggesting that SFMO may have good electrochemicalactivity for oxygen reduction. SFMO shows a thermal expansion coefficient (TEC) of 14.5 x 10-6 ...


A Novel Far-Field Nanoscopic Velocimetry For Nanofluidics, C. Kuang, Guiren Wang Jan 2010

A Novel Far-Field Nanoscopic Velocimetry For Nanofluidics, C. Kuang, Guiren Wang

Faculty Publications

For the first time we have been able to measure the flow velocity profile for nanofluidics with a spatial resolution better than 70 nm. Due to the diffraction resolution barrier, traditional optical methods have so far failed in measuring the velocity profile in a nanocapillary or a closed nanochannel without an opened sidewall. A novel optical point measurement method is presented which applies stimulated emission depletion (STED) microscopy to laser induced fluorescence photobleaching anemometer (LIFPA) techniques to measure flow velocity. Herein we demonstrate this far-field nanoscopic velocimetry method by measuring the velocity profile in a nanocapillary with an inner diameter ...


La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen Mar 2009

La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen

Faculty Publications

Porous yttria-stabilized bismuth oxides (YSB) were investigated as the backbones for La0.85Sr0.15MnO3−(LSM) infiltrated cathodes in intermediate-temperature solid oxide fuel cells. The cathodes were evaluated using anode-supported single cells with scandia-stabilized zirconia as the electrolytes. With humidified H2 as the fuel, the cell showed peak power density of 0.33, 0.52, and 0.74 W cm−2 at 650, 700, and 750°C, respectively. At 650°C, the cell polarization resistance was only 1.38 Ω cm2, <50% of the lowest value previously reported, indicating that YSB is a promising backbone for the LSM infiltrated cathode.


Laser Induced Fluorescence Photobleaching Anemometer For Microfluidic Devices, Guiren Wang Jan 2005

Laser Induced Fluorescence Photobleaching Anemometer For Microfluidic Devices, Guiren Wang

Faculty Publications

We have developed a novel, non-intrusive fluid velocity measurement method based on photobleaching of a fluorescent dye for microfluidic devices. The residence time of thefluorescent dye in a laser beam depends on the flow velocity and approximately corresponds to the decaying time of the photobleaching of the dye in the laser beam. The residence time is inversely proportional to the flow velocity. The fluorescence intensity increases with the flow velocity due to the decrease of the residence time. A calibration curve between fluorescence intensity and known flow velocity should be obtained first. The calibration relationship is then used to calculate ...


Noble Metal Nanostructures Synthesized Inside Mesoporous Nanotemplate Pores, J. Arbiol, E. Rossinyol, A. Cabot, F. Peiro, A. Cornet, J. R. Morante, Fanglin Chen, Meilin Liu Apr 2004

Noble Metal Nanostructures Synthesized Inside Mesoporous Nanotemplate Pores, J. Arbiol, E. Rossinyol, A. Cabot, F. Peiro, A. Cornet, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Noble metal impregnation has resulted in the inclusion of metal nanostructures within the SBA-15 mesoporous silica hexagonal pores (from nanoclusters to nanowires). A bright-field transmission electron microscopy three-dimensional reconstruction is proposed to analyze the localization of nanostructures within the pores of mesoporous nanotemplates. The method allows corroboration whether the nanostructures are synthesized inside the pores or they are synthesized alternatively on the nanotemplate aggregates exterior surface.


Synthesis Of Tin Oxide Nanostructures With Controlled Particle Size Using Mesoporous Frameworks, A. Cabot, J. Arbiol, E. Rossinyol, J. R. Morante, Fanglin Chen, Meilin Liu Mar 2004

Synthesis Of Tin Oxide Nanostructures With Controlled Particle Size Using Mesoporous Frameworks, A. Cabot, J. Arbiol, E. Rossinyol, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Tin oxide nanostructures with controlled narrow particle size distribution were synthesized inside silica mesoporous templates. In this way, particle growth was blocked by physically corseting the tin compound inside the silica frameworks, the pore diameter of which determines the final tin oxide crystallite size distribution. Template structures were subsequently eliminated by chemical methods to collect the unsupported semiconductor nanoparticles. Thus obtained tin oxed nanopowders, with particle sizes in the range between 6 and 10 nm, were structurally, chemically, and electically characterized. The results are compared with those obtained from the characterization of larger crystallite materials.


Surface States In Template Synthesized Tin Oxide Nanoparticles, A. Cabot, J. Arbiol, R. Ferre, J. R. Morante, Fanglin Chen, Meilin Liu Feb 2004

Surface States In Template Synthesized Tin Oxide Nanoparticles, A. Cabot, J. Arbiol, R. Ferre, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Tin–oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800 °C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio ...


Distributions Of Noble Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu Oct 2002

Distributions Of Noble Metal Pd And Pt In Mesoporous Silica, J. Arbiol, A. Cabot, J. R. Morante, Fanglin Chen, Meilin Liu

Faculty Publications

Mesoporous silica nanostructures have been synthesized and loaded with Pd and Pt catalytic noble metals. It is found that Pd forms small nanoclusters (3–5 nm) on the surface of the mesoporous structure whereas Pt impregnation results in the inclusion of Pt nanostructures within the silica hexagonal pores (from nanoclusters to nanowires). It is observed that these materials have high catalytic properties for CO–CH4 combustion, even in a thick film form. In particular, results indicate that the Pt and Pd dispersed in mesoporous silica are catalytically active as a selective filter for gas sensors.


Effect Of Residual Thermal Stresses On Fracture Behavior And Mechanical Properties Of Al Sub 2 O Sub 3/Ni Cermets, Guo Jin Li, Da Ming Chen, Xiao Xian Huang, Jing Kun Guo Jan 2002

Effect Of Residual Thermal Stresses On Fracture Behavior And Mechanical Properties Of Al Sub 2 O Sub 3/Ni Cermets, Guo Jin Li, Da Ming Chen, Xiao Xian Huang, Jing Kun Guo

Faculty Publications

Effect of residual thermal stresses on fracture behavior and mechanical properties of Al2O3/Ni cermets was qualitatively explained by using theory on residual thermal stresses. When Ni particles are located within Al2O3 grains or Ni content is relatively low, tensile stresses are exerted at Al2O3-Al2O3 grain boundary. While fracturing, intergranular fracture is easily produced. When Ni particles are dispersed at Al2O3 grain boundary or Ni content is relatively high, compressive stresses are exerted at Al2O3-Al2O3grain boundary ...


Reduced-Temperature Solid Oxide Fuel Cells Fabricated By Screen Printing, Changrong Xia, Fanglin Chen, Meilin Liu Mar 2001

Reduced-Temperature Solid Oxide Fuel Cells Fabricated By Screen Printing, Changrong Xia, Fanglin Chen, Meilin Liu

Faculty Publications

Electrolyte films of samaria-doped ceria (SDC, Sm0.2Ce0.8O1.9) are fabricated onto porous NiO-SDC substrates by a screen printing technique. A cathode layer, consisting of Sm0.5Sr0.5CoO3 and 10 wt % SDC, is subsequently screen printed on the electrolyte to form a single cell, which is tested at temperatures from 400 to 600°C. When humidified (3% H2O) hydrogen or methane is used as fuel and stationary air as oxidant, the maximum power densities are 188 (or 78) and 397 (or 304) mW/cm2 at 500 ...


Preparation Of Ordered Macroporous Sr0.5sm0.5coo3 As Cathode For Solid Oxide Fuel Cells, Fanglin Chen, Changrong Xia, Meilin Liu Jan 2001

Preparation Of Ordered Macroporous Sr0.5sm0.5coo3 As Cathode For Solid Oxide Fuel Cells, Fanglin Chen, Changrong Xia, Meilin Liu

Faculty Publications

Ordered macroporous Sr0.5Sm0.5CoO3 structrures with an average pore size of 140 nm have been prepared using closepacked arrangement of monodispersed polystyrene spheres as templates. A fuel cell using ordered macroporous Sr0.5Sm0.5CoO3 as the cathode, gadolinia-doped ceria (GDC) film as the electrolyte, and GDC–NiO as the anode generated maximum power densities of 150, 196 and 267 mW/cm2 at 500, 550 and 600 °C, respectively.


Preparation Of Mesoporous Sno2-Sio2 Composite As Electrodes For Lithium Batteries, Fanglin Chen, Zhong Shi, Meilin Liu Oct 2000

Preparation Of Mesoporous Sno2-Sio2 Composite As Electrodes For Lithium Batteries, Fanglin Chen, Zhong Shi, Meilin Liu

Faculty Publications

Mesoporous SnO2–SiO2 composite stable up to 600 °C with a BET surface area of 350 m2 g-1 and an average pore size of 3.4 nm is successfully prepared, which exhibits promising cycling properties as anodes for lithium batteries


Preparation Of Mesoporous Yttria-Stabilized Zirconia (Ysz) And Ysz-Nio Using A Triblock Copolymer As Surfactant, Fanglin Chen, Meilin Liu Oct 2000

Preparation Of Mesoporous Yttria-Stabilized Zirconia (Ysz) And Ysz-Nio Using A Triblock Copolymer As Surfactant, Fanglin Chen, Meilin Liu

Faculty Publications

Mesoporous yttria-stabilized zirconia (YSZ) and YSZ-NiO have been prepared for the first time using Pluronic P103 as a structure-directing agent and inorganic chlorides as precursors in a nonaqueous medium. After being fired at 500°C for 2 h, mesostructured YSZ has a BET surface area of about 146 m2 g-1, with an average pore size of 3.8 nm, while mesostructured YSZ-NiO has a BET surface area of about 108 m2 g-1, with an average pore size of 4.5 nm.


Oxygen Permeation Through Composite Oxide-Ion And Electronic Conductors, Kevin Huang, Michael Schroeder, John B. Goodenough May 1999

Oxygen Permeation Through Composite Oxide-Ion And Electronic Conductors, Kevin Huang, Michael Schroeder, John B. Goodenough

Faculty Publications

Oxygen permeation through composites consisting of four well-known oxide-ion conductors and a noble metal, Pd or Ag, is reported. The oxides were Zr0.9Y0.1O1.95 (YSZ), (Bi1.75Y0.25O3)0.95(CeO2)0.05 (BYC5), Ce0.8Sm0.2O1.9 (SSC), and La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM). The results show that (BYC5 + Ag) yields the highest oxygen permeation flux, but the composite deteriorates with time. The composites (SSC + Pd), (LSGM + Pd), and (YSZ ...


Preparation Of Mesoporous Tin Oxide For Electrochemical Applications, Fanglin Chen, Meilin Liu Jan 1999

Preparation Of Mesoporous Tin Oxide For Electrochemical Applications, Fanglin Chen, Meilin Liu

Faculty Publications

Mesoporous tin oxide stable up to 500 °C has been prepared for the first time using both cationic and neutral surfactants.


Chemical Stability Study Of Bace0.9Nd0.1O3−Α High Temperature Proton-Conducting Ceramic, Fanglin Chen, O. Toft Sorensen, Guangyao Meng, Dingkum Peng Jan 1997

Chemical Stability Study Of Bace0.9Nd0.1O3−Α High Temperature Proton-Conducting Ceramic, Fanglin Chen, O. Toft Sorensen, Guangyao Meng, Dingkum Peng

Faculty Publications

BaCe0.9Nd0.1O3−a (BCN) ceramic is known to be an excellent high-temperature proton conductor and is a candidate electrolyte for use in solid oxide fuel cells, hydrogen or steam sensors and steam electrolysers. In this work, the chemical stability of BCN was investigated systematically by combining XRD and DTA–TG techniques to study its processing compatibility and its feasibility in potential applications. It was found that above 1200 °C, BCN reacted with alumina or zirconia, leading to the loss of barium and an excess of cerium. In cold water, both sintered BCN disks and ...


Preparation Of Nd-Doped Baceo3 Proton-Conducting Ceramics By Homogeneous Oxalate Coprecipitation, Fanglin Chen, Ping Wang, O. Toft Sorensen, Guangyao Meng, Dingkum Peng Jan 1997

Preparation Of Nd-Doped Baceo3 Proton-Conducting Ceramics By Homogeneous Oxalate Coprecipitation, Fanglin Chen, Ping Wang, O. Toft Sorensen, Guangyao Meng, Dingkum Peng

Faculty Publications

Nd-doped BaCeO3 have been obtained from homogeneous coprecipitated oxalates when calcined at temperatures T≥1000 °C. Ball-milling of the calcined powders well disperses the agglomerates and consequently has a beneficial effect in the densification process. The calcination temperature has a major influence on the sintering process and powders calcined at 1100 °C possess good sinterabilities. The pressure applied to press the green pellets has no apparent influence on the sintered density at sintering temperatures of T≥1400 °C. By controlling the processing variables it was possible to obtain near fully dense Nd-doped BaCeO3 ceramics with homogeneous microstructure at ...


The Asymptotic Structure Of Transient Elastodynamic Fields At The Tip Of A Stationary Crack, Xiaomin Deng Jul 1994

The Asymptotic Structure Of Transient Elastodynamic Fields At The Tip Of A Stationary Crack, Xiaomin Deng

Faculty Publications

The asymptotic structure of the transient elastodynamic near-tip fields around a stationary crack is investigated for all three fracture modes. The transient fields are obtained as the sum of their quasi-static counterparts and corresponding transient correction terms, in terms of variable-separable expansions. By allowing the coefficients of terms in the quasi-static expansion to deviate from their quasi-static restrictions, the correction terms are shown to be the particular solutions of a set of first order (for mixed mode I and II) or second order (for mode III) ordinary differential equations with constant coefficients and non-homogeneous terms involving only sine and cosine ...


On Stationary And Moving Interface Cracks With Frictionless Contact In Anisotropic Bimaterials, Xiaomin Deng Dec 1993

On Stationary And Moving Interface Cracks With Frictionless Contact In Anisotropic Bimaterials, Xiaomin Deng

Faculty Publications

The asymptotic structure of near-tip fields around stationary and steadily growing interface cracks, with frictionless crack surface contact, and in anisotropic bimaterials, is analysed with the method of analytic continuation, and a complete representation of the asymptotic fields is obtained in terms of arbitrary entire functions. It is shown that when the symmetry, if any, and orientation of the anisotropic bimaterial is such that the in-plane and out-of-plane deformations can be separated from each other, the in-plane crack-tip fields will have a non-oscillatory, inverse-squared-root type stress singularity, with angular variations clearly resembling those for a classical mode II problem when ...