Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Arkansas, Fayetteville

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 197

Full-Text Articles in Mechanical Engineering

Cam And Design For Manufacturing: Developing A Project-Based Learning Course, Stephen Pierson May 2024

Cam And Design For Manufacturing: Developing A Project-Based Learning Course, Stephen Pierson

Mechanical Engineering Undergraduate Honors Theses

To effectively serve student career success, mechanical engineering programs must teach students how to account for manufacturing considerations in design. Despite this, manufacturing education is a glaring area of need in current engineering curricula. In fact, basic manufacturing knowledge is one of the only hard skills consistently ranked as one of the greatest weaknesses of mechanical engineering hires in surveys of industrial employers over the last few decades. Without radically changing departmental curriculum to include more emphasis on design-build projects, one solution to combat this is to incubate a lab course in mechanical engineering programs in which undergraduates would practice …


The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Development Of A Prototype Satellite-Tracking Telescope For Ground-Based Spectroscopy, Charles Smith Dec 2023

Development Of A Prototype Satellite-Tracking Telescope For Ground-Based Spectroscopy, Charles Smith

Graduate Theses and Dissertations

Spectroscopy is the practice of determining the chemical composition of a gas through analyzing the light that is filtered by the gas. Spectroscopy is commonly used by astronomers to deduce the atmospheric composition of planets. This process is done by initially measuring the spectrum of light from the star that the planet orbits, and then measuring it again once the planet is in between the observer and the star. The spectrum light that is filtered out is dependent on the chemical composition of the gas, and so this information can be used to determine the chemical composition of the atmosphere …


Capabilities Of Sintered Silver As A High Temperature Packaging Material, Bakhtiyar Mohammad Nafis Dec 2023

Capabilities Of Sintered Silver As A High Temperature Packaging Material, Bakhtiyar Mohammad Nafis

Graduate Theses and Dissertations

With electrification progressing across many sectors including industry, automotive and aerospace, the power density requirements are changing. The increased power density results in higher and higher ambient temperatures that electronics are exposed to. The response has been to move towards wide bandgap (WBG) semiconductor devices that can withstand much greater temperatures and can operate at much higher voltages than silicon. Additionally, these WBG devices deliver low drain-source on resistance (RDS_on) capabilities, enabling high current power modules that increase power density even further. This also requires the packaging to evolve in order to withstand the new requirements. As a result, researchers …


Thermal Resistance Characterization Of High-Voltage Sic Power Module, Landon Lemmons Dec 2023

Thermal Resistance Characterization Of High-Voltage Sic Power Module, Landon Lemmons

Mechanical Engineering Undergraduate Honors Theses

Researchers within the University of Arkansas Electrical Engineering Research Department have embarked on a project aimed at enhancing the thermal performance of high-voltage power modules. To aid in the progress of this project, the design, and development of a thermal tester device are needed. The primary objective of this device is to determine the various thermal properties of high-voltage power modules that the electrical engineering department has developed. Additionally, the project aims to facilitate electrical loading tests on power modules and provide researchers with the means to calibrate the power module in terms of thermal load. This project also possesses …


Partial Discharge Mitigation In Power Modules Using An Automation-Driven Design Rule Development Method, Shilpi Mukherjee Sep 2023

Partial Discharge Mitigation In Power Modules Using An Automation-Driven Design Rule Development Method, Shilpi Mukherjee

Graduate Theses and Dissertations

Power modules used for the conversion and conditioning of electrical power for applications like electric vehicles, more-electric aircraft, the power grid, etc., are largely designed manually by engineers. Design automation of power modules is starting to gain recognition as a timely and necessary alternative to intuitive manual design and fabrication. With increasing need for wide bandgap materials that can operate at higher voltages, and the need to make modules more compact, hazards like electrical breakdown are more likely. Partial discharge (PD) is a silent and invisible precursor to electrical breakdown. It is compounded with compaction, creating a potential for electrical …


Improving Tribological Properties Of Polydopamine/Polytetrafluoroethylene Coatings Through Incorporating Core-Shell Nanoparticles And Laser Surface Texturing, Firuze Soltani-Kordshuli May 2023

Improving Tribological Properties Of Polydopamine/Polytetrafluoroethylene Coatings Through Incorporating Core-Shell Nanoparticles And Laser Surface Texturing, Firuze Soltani-Kordshuli

Graduate Theses and Dissertations

Polytetrafluoroethylene (PTFE) is a widely used polymer that has unique properties such as chemical and temperature resistance, corrosion resistance, low maintenance cost, and a very low coefficient of friction (COF). These distinctive properties have made PTFE a promising candidate for industrial applications where surfaces are in relative motion. PTFE can be utilized as a thin film solid lubricant to significantly reduce the friction between moving surfaces. However, PTFE coatings have low cohesion and poor adhesion to the substrate resulting in its low wear resistance. This fact limits the application of PTFE coatings in load-bearing situations. To address these limitations, an …


Pda/Ptfe Solid Lubricant Coating For 60niti Applications, Charles Richey Miller May 2023

Pda/Ptfe Solid Lubricant Coating For 60niti Applications, Charles Richey Miller

Graduate Theses and Dissertations

The intermetallic alloy 60NiTi has a unique combination of high hardness and low elastic modulus, which makes it highly resistant to dents. Additionally, 60NiTi is extremely corrosion resistant and chemically inert. These properties make 60NiTi a desirable material for challenging mechanical component applications with high contact stresses and in harsh environments. However, lubrication issues have hindered the use of 60NiTi because it has poor tribological performance if it is not properly lubricated. The mechanical properties of hardened 60NiTi and its microconstituents were studied by nanoindentation. This study showed that the bulk properties of 60NiTi are driven by the properties of …


Advanced Cmos Process For Submicron Silicon Carbide (Sic) Device, Niloy Saha May 2023

Advanced Cmos Process For Submicron Silicon Carbide (Sic) Device, Niloy Saha

Graduate Theses and Dissertations

Silicon carbide (SiC) is a wide semiconductor material with superior material properties compared to other rival materials. Due to its fewer dislocation defects than gallium nitride and its ability to form native oxides, this material possesses an advantage among wide band gap materials. Despite having several superior properties its low voltage application is less explored. CMOS is extremely important in low voltage areas and silicon is the dominant player in it for the last 50 years where scaling has contributed a major role in this flourishment. The channel length of silicon devices has reached 3 nm whereas SiC is still …


Investigation Of Dynamic Hybrid Rans-Les Turbulence Modeling For Cfd Simulation Of A Normal Jet In Crossflow, Cole Simmonds May 2023

Investigation Of Dynamic Hybrid Rans-Les Turbulence Modeling For Cfd Simulation Of A Normal Jet In Crossflow, Cole Simmonds

Mechanical Engineering Undergraduate Honors Theses

The jet in crossflow is a canonical flow feature in many natural and engineered systems, ranging from pollutant dispersal in exhaust discharge to film cooling of high-temperature components in modern propulsion systems. The ability to computationally predict the flow features of jets in crossflow accurately and efficiently is therefore important for analysis and design for a wide variety of applications. In this study the capabilities of the dynamic hybrid RANS-LES (DHRL) turbulence modeling technique are investigated and compared to an industry standard Reynolds-averaged Navier-Stokes model (k-omega SST) in order to quantify the accuracy and computational cost of the two approaches. …


Characterization And Manipulation Of Double-Stranded Dna Using Atomic Force Microscopy, Lauren Skartvedt May 2023

Characterization And Manipulation Of Double-Stranded Dna Using Atomic Force Microscopy, Lauren Skartvedt

Mechanical Engineering Undergraduate Honors Theses

An atomic force microscope (AFM) is used to scan high-resolution images on the nano scale. The lambda DNA used for this project are 48,502 base pairs in length and are double-stranded. This project utilizes the NanoSurf Core AFM in order to characterize and manipulate strands of lambda DNA which have been deposited on a mica surface. The deposition process of the DNA on the mica surface was developed by the National Institute of Standards and Technology and the University of Colorado - Boulder. The AFM is used in imaging mode to scan the mica surface to locate the DNA. When …


A Systematic Study Into The Design And Utilization Of Burn Wire As A Means Of Tensioning And Releasing Spacecraft Mechanisms Through Applied Joule Heating, Chandler Dye May 2023

A Systematic Study Into The Design And Utilization Of Burn Wire As A Means Of Tensioning And Releasing Spacecraft Mechanisms Through Applied Joule Heating, Chandler Dye

Mechanical Engineering Undergraduate Honors Theses

The joule heating characteristics of Nichrome burn wires, often used as a thermal cutting device in mechanisms designed to fasten and release CubeSat deployables, are examined in the following thesis. Wires ranging from 0.125 inches to 2 inches long, and diameters of 30 Ga and 40 Ga, are investigated through analytical calculations and thermal simulations based on heat transfer due to joule heating, and through physical circuitry-based experiments. The temperature data is used to generate heating curves to predict the time it takes for Nichrome wires to fail under varying testing parameters. This research aims to catalog a series of …


Reynolds-Averaged Navier-Stokes Cfd Simulation Of High-Speed Boundary Layers, Michael Tullis May 2023

Reynolds-Averaged Navier-Stokes Cfd Simulation Of High-Speed Boundary Layers, Michael Tullis

Mechanical Engineering Undergraduate Honors Theses

This paper presents an investigation of Reynolds-averaged Navier-Stokes (RANS) turbulence models used in computational fluid dynamics (CFD) simulations of boundary layer flow and heat transfer in high Mach number flows. This study evaluates an industry standard RANS turbulence model (k-omega SST) and a recently proposed modification to that model (Danis and Durbin [1]), and quantifies the accuracy for predicting high Mach number boundary layer flow. The test cases were previously documented by Duan et al. (2018), who used direct numerical simulation (DNS) to calculate boundary layer flow of an ideal gas over a flat plate at freestream Mach numbers ranging …


Interfacial Engineering Of Nickel-Rich Layered Oxide Cathodes Via Atomic Layer Deposition (Ald), Xin Wang Dec 2022

Interfacial Engineering Of Nickel-Rich Layered Oxide Cathodes Via Atomic Layer Deposition (Ald), Xin Wang

Graduate Theses and Dissertations

Layered nickel-rich cathodes LiNixMnyCozO2 (NMCs, x + y + z =1, x ≥ 0.6) are regarded as one of the most promising cathode materials for next-generation lithium-ion batteries (LIBs), given their remarkably reduced cost and increased capacity compared to the conventional LiCoO2 cathode. However, the deployment of these Ni-rich cathodes has been hindered by the continuous loss of practical capacity and reduction in average working voltage, inherently due to their interfacial, structural, and thermodynamic instability. To address these issues, interfacial engineering via surface modification has been well-recognized as an effective strategy and a large number of coating materials have been …


Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman Aug 2022

Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman

Graduate Theses and Dissertations

Research on design thinking and design decision-making is vital for discovering and utilizing beneficial design patterns, strategies, and heuristics of human designers in solving engineering design problems. It is also essential for the development of new algorithms embedded with human intelligence and can facilitate human-computer interactions. However, modeling design thinking is challenging because it takes place in the designer’s mind, which is intricate, implicit, and tacit. For an in-depth understanding of design thinking, fine-grained design behavioral data are important because they are the critical link in studying the relationship between design thinking, design decisions, design actions, and design performance. Therefore, …


Constraint-Aware, Scalable, And Efficient Algorithms For Multi-Chip Power Module Layout Optimization, Imam Al Razi Aug 2022

Constraint-Aware, Scalable, And Efficient Algorithms For Multi-Chip Power Module Layout Optimization, Imam Al Razi

Graduate Theses and Dissertations

Moving towards an electrified world requires ultra high-density power converters. Electric vehicles, electrified aerospace, data centers, etc. are just a few fields among wide application areas of power electronic systems, where high-density power converters are essential. As a critical part of these power converters, power semiconductor modules and their layout optimization has been identified as a crucial step in achieving the maximum performance and density for wide bandgap technologies (i.e., GaN and SiC). New packaging technologies are also introduced to produce reliable and efficient multichip power module (MCPM) designs to push the current limits. The complexity of the emerging MCPM …


Understanding Thermal Comfort Impact And Air Movement Around Open Stairs Through The Use Of Cfd Modeling, Ethan Davidson May 2022

Understanding Thermal Comfort Impact And Air Movement Around Open Stairs Through The Use Of Cfd Modeling, Ethan Davidson

Graduate Theses and Dissertations

The air exchange between two floors of a building has an impact on thermal comfort. The present research attempts to quantify this impact and identify the contributing factors disrupting the thermal comfort on and around stairs. Various heating and cooling scenarios were analyzed, using CFD modeling, in a simple two-story building separated by a single staircase. The research examines a single building layout with a fixed inlet and outlet configuration. In addition, the study investigated the short-term impact on thermal comfort. As a result, the duration of the simulations varies from two and half minutes to ten minutes, consistent with …


Generative Designs Of Lightweight Air-Cooled Heat Exchangers, Connor Miller May 2022

Generative Designs Of Lightweight Air-Cooled Heat Exchangers, Connor Miller

Mechanical Engineering Undergraduate Honors Theses

The development of high-performance air-cooled heat exchangers is required to permit the rapid growth of vehicle and aircraft electrification. In electric vehicles and airliners, the motors and power electronics are integrated into a compact space, leading to unprecedently high power density. To achieve higher overall thermal efficiency, the heat exchangers must be extremely light while maintaining their heat transfer performance and mechanical robustness. Recently advances in 3D metal printing, e.g., direct metal laser sintering, and selective laser melting, have enabled the manufacturing of high-performance robust heat exchangers by eliminating thermal boundary resistance and ensuring a uniform thermal expansion coefficient. Nonetheless, …


Atomic Force Microscopy Based Dna Sensing And Manipulation, Matthew Shubert May 2022

Atomic Force Microscopy Based Dna Sensing And Manipulation, Matthew Shubert

Mechanical Engineering Undergraduate Honors Theses

Sequencing DNA provides a positive impact for the biomedical community by understanding a wide variety of applications such as human genetics, disease, and pathogens. The reason the Arkansas Micro & Nano Systems lab is involved with research in DNA sequencing is due to the current, leading industry method. Nanopore sequencing was developed by Oxford Nanopore Technology in which its sequencing method separates double stranded DNA to electrically characterize individual nucleotides traveling through a charged nanopore. Unfortunately, nanopore sequencing uses biological materials that require a shelf life and drives high cost. Therefore, the Arkansas Micro & Nano Systems lab has developed …


Autonomous Material Refill For Swarm 3d Printing, William C. Jones May 2022

Autonomous Material Refill For Swarm 3d Printing, William C. Jones

Mechanical Engineering Undergraduate Honors Theses

3D printing currently offers robust and cheap rapid prototyping solutions. While standard 3D printing remains at the periphery of mass production, the technology serves as a starting point for the development of swarm manufacturing. Since swarm manufacturing is predicated upon autonomy, swarm technology companies such as AMBOTS are seeking to minimize human involvement in the swarm’s functions. At present, the 3D printing swarm consists of the printers, a transporter which can take them between job sites, and the floor tiles which provide power and support the build surfaces. To add to this ecosystem, this project is focused on the design …


Enhancing Stability Of High-Nickel Cathodes For Lithium-Ion Batteries Through Additive Manufacturing Of Cathode Structure, Matthew Sullivan May 2022

Enhancing Stability Of High-Nickel Cathodes For Lithium-Ion Batteries Through Additive Manufacturing Of Cathode Structure, Matthew Sullivan

Mechanical Engineering Undergraduate Honors Theses

Lithium-ion batteries (LIBs) are currently the best method to store electrical energy for use in portable electronics and electronic vehicles. New cathode materials for LIBs are consistently studied and researched, but few are as promising and attainable as nickel-rich transition metal oxides such as LiNi1-x-yMnxCoyO2 (NMC). NMC materials exist with many different mass ratios, but higher nickel content materials provide higher energy density. With this increase in capacity comes a sacrifice with cyclability, as high-nickel NMC variants are prone to structure collapse, transition metal dissolution, and cracks due to volume change. In this report, mechanical modification of the electrode by …


Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes Dec 2021

Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes

Graduate Theses and Dissertations

Li-ion batteries are widely used due to the large amount of rechargeable energy they pack into a small, light package. This higher energy density makes Li-ion batteries ideal for small satellite applications, specifically CubeSats. CubeSats have grown in popularity in higher level education due to the National Aeronautics and Space Administration’s implementation of the Cube Satellite Launch Initiative, making it easier and cheaper to conduct small, low orbit missions. Because these CubeSats are occupying the same space as a crewed spacecraft, it is imperative that they are safe. There are numerous reports of Li-ion batteries creating fires that result in …


Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo Dec 2021

Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo

Graduate Theses and Dissertations

The understanding of bubble dynamics during boiling is critical to the design of advanced heater surfaces to improve the boiling heat transfer. The stochastic bubble nucleation, growth, and coalescence processes have made it challenging to obtain mechanistic models that can predict boiling heat flux based on the bubble dynamics. Traditional boiling image analysis relies on the extraction of the dominant physical quantities from the images and is thus limited to the existing knowledge of these quantities. Recently, machine-learning-aided analysis has shown success in boiling crisis detection, heat flux prediction, real-time image analysis, etc., whereas most of the existing studies are …


Respiratory Compensated Robot For Liver Cancer Treatment: Design, Fabrication, And Benchtop Characterization, Mishek Jair Musa Dec 2021

Respiratory Compensated Robot For Liver Cancer Treatment: Design, Fabrication, And Benchtop Characterization, Mishek Jair Musa

Graduate Theses and Dissertations

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in the world. Radiofrequency ablation (RFA) is an effective method for treating tumors less than 5 cm. However, manually placing the RFA needle at the site of the tumor is challenging due to the complicated respiratory induced motion of the liver. This paper presents the design, fabrication, and benchtop characterization of a patient mounted, respiratory compensated robotic needle insertion platform to perform percutaneous needle interventions. The robotic platform consists of a 4-DoF dual-stage cartesian platform used to control the pose of a 1-DoF needle insertion module. The active …


Thermometry Via Diffusion In Ferrous Core-Shell Nanoparticles For Induction Heating Applications, Hayden Carlton Dec 2021

Thermometry Via Diffusion In Ferrous Core-Shell Nanoparticles For Induction Heating Applications, Hayden Carlton

Graduate Theses and Dissertations

Induction heating causes the release of enormous amounts of heat from dispersed magnetic nanoparticles. While the rate of heat transfer can be easily quantified calorimetrically, measuring the temperature of the nanoparticles on the nanoscale presents experimental challenges. Fully characterizing the temperature and thermal output of these magnetic particles is necessary to gauge overall heating efficiency and to provide a more holistic understanding of heat transfer on the nanoscale. Herein, this dissertation seeks to develop a novel nanoparticle thermometry technique, which correlates diffusion behavior in core-shell nanoparticles to local temperature. Initial measurements suggested that heating silica capped ferrous nanoparticles (SCNPs) via …


Nonmetallic Jet Impingement Thermal Management For Power Electronics Via Additive Manufacturing, Reece Whitt Dec 2021

Nonmetallic Jet Impingement Thermal Management For Power Electronics Via Additive Manufacturing, Reece Whitt

Graduate Theses and Dissertations

The increase in energy demanded by transportation and energy sectors has necessitated highly efficient thermal management for reliable power electronics operations. Conventional cooling techniques are limited by their inability to target switching location hot spot temperatures, leading to non-uniform thermal gradients. These devices, such as cold plates and heat sinks, also utilize heavy metallic structures that can accentuate electromagnetic interferences generated by high voltage switching processes. This work proposes a non-metallic jet impingement cooler for more customized thermal management, while simultaneously reducing the harmful effects of electromagnetic interferences. Additive manufacturing is utilized to enable jet impingement zones to target individual …


Combined Stressors In Reliability Failure Modes In Flip-Chip Electronic Packaging, Mahsa Montazeri Dec 2021

Combined Stressors In Reliability Failure Modes In Flip-Chip Electronic Packaging, Mahsa Montazeri

Graduate Theses and Dissertations

The trend toward miniaturization of electronic devices to fulfill Moore’s law introduces new reliability concerns to the electronic packaging process while worsening existing primary challenges. In solder interconnect specifically, temperature cycling is one of the prominent failure threats. However, with further downscaling of the flip-chip solder connections, electromigration also present a precarious failure mode in these interconnects. On the other hand, understanding the degradation mechanism in solders is crucial for the power electronic products' reliability considering the industrial tendency to replace wirebonds with solder attachment while improving the current carry capacity. This dissertation utilizes FEA simulation and an experimental approach …


Mission Profile Effects On Automotive Drivetrain Electronics Reliability: Modeling And Mitigation, Bakhtiyar Mohammad Nafis Dec 2021

Mission Profile Effects On Automotive Drivetrain Electronics Reliability: Modeling And Mitigation, Bakhtiyar Mohammad Nafis

Graduate Theses and Dissertations

The reliability of electronic devices is dependent upon the conditions to which they are subject. Temperature variations coupled with differences in thermal expansion between bonded materials results in thermomechanical stresses to build up, which can instigate failure in the interconnects or other critical regions. With the move towards electrification in the automotive industry, there is the increasingly important consideration of powertrain electronics reliability, the pertinent conditions being governed by the drive cycle or mission profile of the vehicle. The mission profile determines the power dissipated by the electronic devices, which determines the peak and mean temperature, temperature swing and the …


Identification Of Phosphorous Loading Point Source Facilities To 303(D) Listed Nutrient Impaired Waters Through Watershed Delineation Using Arcgis For Life Cycle Assessment Applications, John Zimmerman Dec 2021

Identification Of Phosphorous Loading Point Source Facilities To 303(D) Listed Nutrient Impaired Waters Through Watershed Delineation Using Arcgis For Life Cycle Assessment Applications, John Zimmerman

Chemical Engineering Undergraduate Honors Theses

The work done for this project is part of a larger “life cycle assessment (LCA) of novel electrochemical phosphorus recovery technology at the wastewater treatment plant and U.S. watershed scales” (Morrissey 2019). The goal of that LCA is to determine “environmental impacts of implementing electrochemical struvite recovery at the wastewater treatment plant, U.S watershed, and global scales” (Morrissey 2019). This project’s goal is to identify locations deemed more sensitive to eutrophication impacts. The results will be used as part of the life cycle inventory (LCI) accounting for geographically explicit phosphorus flows. The waters identified as impaired were sourced from the …


Tribological Studies Of Thick Polytetrafluoroethylene Coatings Enhanced By Polydopamine And Nanoparticles, Sujan Kumar Ghosh Jul 2021

Tribological Studies Of Thick Polytetrafluoroethylene Coatings Enhanced By Polydopamine And Nanoparticles, Sujan Kumar Ghosh

Graduate Theses and Dissertations

Polytetrafluoroethylene (PTFE) is a popular low friction solid lubricant with high chemical and thermal stability. Thick PTFE coatings have the potential for many tribological applications, such as replacing Tin-based Babbitt materials in journal bearings. However, the weak bonding strength to the substrate and the high wear rate of PTFE coatings are current limiting factors. The lack of understanding of their tribological properties and wear mechanisms in oil-lubricated conditions and how coating thickness affects the tribological performance further hindered the use of PTFE coatings. In this dissertation, polydopamine (PDA), a bio-inspired adhesive, is used as an underlayer for or as a …