Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

2024

Discipline
Keyword
Publication
Publication Type

Articles 1 - 17 of 17

Full-Text Articles in Mechanical Engineering

Application Of The Fokker-Planck Equation For Quantifying Initial Condition Uncertainty Of Reversible Dynamic Systems, Troy S. Newhart Apr 2024

Application Of The Fokker-Planck Equation For Quantifying Initial Condition Uncertainty Of Reversible Dynamic Systems, Troy S. Newhart

Mechanical & Aerospace Engineering Theses & Dissertations

Characterizing the behavior of dynamic systems requires the inclusion of initial conditions to propagate behavior forward in time. More realistic representations of system behavior quantify uncertainty about the initial conditions to assess sensitivity, reliability, and other stochastic response parameters. In many engineering applications, the uncertain initial conditions may be unknown given a desired response. This research applies the Fokker-Planck equation to reversible dynamic systems of select multi-dimensional nonlinear differential equations as a means for predicting the uncertainty about initial conditions. An alternating directions implicit numerical scheme is used to numerically solve the Fokker-Planck equation for both forward and reversed equations …


Thermo-Elasto-Plastic Stability Of Biaxially Loaded Hollow Rectangular Section Steel Beam-Columns With Applied Torsion, George Adomako Kumi Apr 2024

Thermo-Elasto-Plastic Stability Of Biaxially Loaded Hollow Rectangular Section Steel Beam-Columns With Applied Torsion, George Adomako Kumi

Civil & Environmental Engineering Theses & Dissertations

Presented herein is an experimental and theoretical study of biaxially loaded hollow rectangular section steel beam-columns with applied torsion at elevated temperatures. The theoretical analysis is based on a system of simultaneous materially nonlinear differential equations of equilibrium for which an iterative semi-analytic solution approach is formulated. Although the primary goal of this research is to study the influence of elevated temperatures on the steel member with the complex loading, rigorous analysis is also conducted of the member at ambient temperature for comparison. The experimental part of the study involves conducting tests on the members at both ambient and high …


Structural Characterization Of A Tritruss Module, Lauren M. Simmons Apr 2024

Structural Characterization Of A Tritruss Module, Lauren M. Simmons

Mechanical & Aerospace Engineering Theses & Dissertations

The TriTruss is a novel structural module developed by researchers at NASA Langley Research Center (LaRC) that can be used in space to assemble large support structures for a variety of applications. One such application is the metering truss or primary mirror backbone support structure of an In-Space Assembled Telescope (iSAT). For the iSAT application, the TriTruss will be supporting mirror segments, payloads, and instruments, all of which require the TriTruss to have a high stiffness. Structural characterization from testing and analysis is needed to ensure the integrity of the struts that make up a TriTruss module is maintained when …


Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Development Of A Two-Finger Haptic Robotic Hand With Novel Stiffness Detection And Impedance Control, Vahid Mohammadi, Ramin Shahbad, Mojtaba Hosseini, Mohammad Hossein Gholampour, Saeed Shiry Ghidary, Farshid Najafi, Ahad Behboodi Jan 2024

Development Of A Two-Finger Haptic Robotic Hand With Novel Stiffness Detection And Impedance Control, Vahid Mohammadi, Ramin Shahbad, Mojtaba Hosseini, Mohammad Hossein Gholampour, Saeed Shiry Ghidary, Farshid Najafi, Ahad Behboodi

Mechanical & Aerospace Engineering Faculty Publications

Haptic hands and grippers, designed to enable skillful object manipulation, are pivotal for high-precision interaction with environments. These technologies are particularly vital in fields such as minimally invasive surgery, where they enhance surgical accuracy and tactile feedback: in the development of advanced prosthetic limbs, offering users improved functionality and a more natural sense of touch, and within industrial automation and manufacturing, they contribute to more efficient, safe, and flexible production processes. This paper presents the development of a two-finger robotic hand that employs simple yet precise strategies to manipulate objects without damaging or dropping them. Our innovative approach fused force-sensitive …


Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi Jan 2024

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This paper presents fabrication, experimental testing, and progressive failure modeling to study the deformation of an ultra-thin composite beam. The research study examines the deformation modes of a post-deployed boom under repetitive pure bending loads using a four-point bending setup and …


Parametric Optimization Of Friction Stir Welding Of Aa6061-T6 Samples Using The Copper Donor Stir-Assisted Material Method, Aiman H. Al-Allaq, Joseph Maniscalco, Srinivasa Naik Bhukya, Zhenhua Wu, Abdelmageed Elmustafa Jan 2024

Parametric Optimization Of Friction Stir Welding Of Aa6061-T6 Samples Using The Copper Donor Stir-Assisted Material Method, Aiman H. Al-Allaq, Joseph Maniscalco, Srinivasa Naik Bhukya, Zhenhua Wu, Abdelmageed Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

This study presents an optimization of the process parameters for the effect of copper (Cu) donor material percentage on the friction stir welding (FSW) of AA6061-T6 alloy. Extensive factorial experiments were conducted to determine the significance of the rotational speed (ω), the transverse speed (v), the interface coefficient of friction (μ), and the Cu donor material percentage in the plunge, left, right, and downstream zones. Design Expert 13 software was used to identify the number of simulation experiments to be conducted using the Abaqus simulation software. From Design Expert 13, which is a thorough multi-objective optimization analysis software, we were …


Hardness Removal By A Continuous Flow Electrochemical Reactor From Different Types Of Water, Shahad Fadhil Alrubaye, Naseer A. Al Haboubi, Hussein A. Al-Amili, Aiman H. Al-Allaq, Dhuha Ahmed Mohammed Jan 2024

Hardness Removal By A Continuous Flow Electrochemical Reactor From Different Types Of Water, Shahad Fadhil Alrubaye, Naseer A. Al Haboubi, Hussein A. Al-Amili, Aiman H. Al-Allaq, Dhuha Ahmed Mohammed

Mechanical & Aerospace Engineering Faculty Publications

The present study focuses on the technique of hardness removal by using a novel reactor performing an electrocoagulation (EC) process. The variation of alkalinity is also recorded. Continuous flow experiments were conducted for Total Hardness (TH) removal using a transparent plastic reactor using aluminum plate electrodes that have holes so that the water flows through the plates in a zigzag way. The influence of various operating parameters such as the number of plates (two and four), flow rate (600, 1000 L/h), and water type (Tigris River & rejected water from Reverse Osmosis system RO) was investigated. The results showed that …


Effect Of Post-Cured Through Thickness Reinforcement On Disbonding Behavior In Skin-Stringer Configuration, Jimesh D. Bhagatji, Christopher Morris, Yogaraja Sridhar, Bodhisatwa Bhattacharjee, Krishnanand N. Kaipa, Oleksandr G. Kravchenko Jan 2024

Effect Of Post-Cured Through Thickness Reinforcement On Disbonding Behavior In Skin-Stringer Configuration, Jimesh D. Bhagatji, Christopher Morris, Yogaraja Sridhar, Bodhisatwa Bhattacharjee, Krishnanand N. Kaipa, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

An experimental investigation of interlaminar toughness for post-cured through-thickness reinforcement (PTTR) skin-stringer sub-element is presented. The improvement in the crack resistance capability of skin-stringer samples was shown through experimental testing and finite element analysis (FEA) modeling. The performance of PTTR was evaluated on a pristine and initial-disbond of the skin-stringer specimen. A macro-scale pin-spring modeling approach was employed in FEA using a non-linear spring to capture the pin failure under the mixed-mode load. The experimental results showed a 15.5% and 20.9% increase in strength for the pristine-PTTR and initial-disbond PTTR specimens, respectively. The modeling approach accurately represents the overall structural …


Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which …


Fabrication Of Smooth Sac305 Thin Film Via Magnetron Sputtering, M. Ojha, A. A. Elmustafa Jan 2024

Fabrication Of Smooth Sac305 Thin Film Via Magnetron Sputtering, M. Ojha, A. A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

SAC305 (96.5 wt% Sn, 3 wt% Ag, 0.5 wt%Cu) solder is increasingly becoming popular due to its reliability good characteristics and performance in addition to the environmental concerns and regulations that restrict the use of lead in nano/microelectronic products. In nano/microelectronics, manufacturing smooth solder coatings free of defects such as voids and cracks, which can compromise joint reliability is crucial. Magnetron sputtering offers a high degree of control over film thickness and composition, resulting in films with excellent uniformity and adhesion. Despite these advantages, fabricating continuous and robust SAC305 films using magnetron sputtering remains a difficult task with limited research …


Parametric Study Of The Effect Of Increased Magnetic Field Exposure On Microalgae Chlorella Vulgaris Growth And Bioactive Compound Production, Sharanabasaweshwara Asundi, Sanurag Rout, Simone Stephen, Sanghamitra Khandual, Sandipan Dutta, Sandeep Kumar Jan 2024

Parametric Study Of The Effect Of Increased Magnetic Field Exposure On Microalgae Chlorella Vulgaris Growth And Bioactive Compound Production, Sharanabasaweshwara Asundi, Sanurag Rout, Simone Stephen, Sanghamitra Khandual, Sandipan Dutta, Sandeep Kumar

Mechanical & Aerospace Engineering Faculty Publications

This parametric study aimed to analyze the effects of increased magnetic field exposure (MFE) on the growth and production of the bioactive compounds of Chlorella (C.) vulgaris. With the intent of studying the effect of an increased MFE, the magnetic field typically experienced by life on Earth was amplified by an order of magnitude. In the increased-MFE environment, six treatments of C. vulgaris with two repetitions for each treatment were exposed to a magnetic field of 5 Gauss (500 µT) about each axis, which was generated in a state-of-the-art Helmholtz cage. The treatments and the control were characterized by the …


Factors Affecting Electrocoagulation Process For Different Water Types: A Review, Shahad Fadhil Abed Al-Rubaye, Naseer A. Alhaboubi, Aiman H. Al-Allaq Jan 2024

Factors Affecting Electrocoagulation Process For Different Water Types: A Review, Shahad Fadhil Abed Al-Rubaye, Naseer A. Alhaboubi, Aiman H. Al-Allaq

Mechanical & Aerospace Engineering Faculty Publications

Raw water must meet specific physical, chemical, and biological requirements to be suitable for drinking. There are various techniques available for treating wastewater, and aside from conventional methods that involve chemicals, electrocoagulation is an efficient and advanced approach. Electrocoagulation has proven effective in treating many pollutants, including bacteria, viruses, iron, fluoride, sulfate, boron, hardness, and turbidity. Total suspended solids, organic and inorganic materials, chemical oxygen demand COD, biochemical oxygen demand BOD, and color. It finds extensive application in treating different types of water and wastewater due to its exceptional ability to remove diverse contaminants. Recently, electrocoagulation has garnered significant attention …


Effects Of Electron Beam Irradiation On Crmnv And Crmntiv High Entropy Alloys: Nano-Mechanical, Structural, And Thermodynamic Perspectives, N. A. Sultana, Y. S. Mohammed, S. J. Pendleton, J. Vennekate, G. Ciovati, X. Li, H. Baumgart, A. A. Elmustafa Jan 2024

Effects Of Electron Beam Irradiation On Crmnv And Crmntiv High Entropy Alloys: Nano-Mechanical, Structural, And Thermodynamic Perspectives, N. A. Sultana, Y. S. Mohammed, S. J. Pendleton, J. Vennekate, G. Ciovati, X. Li, H. Baumgart, A. A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

Beam exit windows are crucial components of any particle accelerator as they provide an interface between the beamline vacuum and target material at atmospheric media. For high beam power machines, special materials and designs are required to withstand high radiation and mechanical loads, while minimizing energy loss during transition and maximizing window lifetime. This research investigates the impact of electron beam exposure to bulk CrMnV and CrMnTiV high entropy alloys (HEAs) with the primary goal of identifying suitable candidate materials for the design of robust and durable exit window settings. The selection criteria include intrinsic characteristics, power dissipation, and mechanical …


Assessing Porosity Limit In Freeze-Cast Sintered Lithium Titanate (Li₄Ti₅O₁₂) Materials, Rohan Parai, Dipankar Ghosh Jan 2024

Assessing Porosity Limit In Freeze-Cast Sintered Lithium Titanate (Li₄Ti₅O₁₂) Materials, Rohan Parai, Dipankar Ghosh

Mechanical & Aerospace Engineering Faculty Publications

This study aims to assess the lower limit of porosity that can be achieved in freeze-cast sintered lithium titanate (LTO) materials while maintaining the characteristic pore directionality. LTO materials were fabricated with solid loading varying in the range of 30–37 vol.%. Sucrose and cationic dispersant were used to vary viscosity and total solute concentration in the aqueous LTO suspensions. Two series of suspension compositions were selected for freeze-casting. In one series, aqueous suspensions were prepared by mixing deionized (DI) water, sucrose, and LTO powder, while in the other series, aqueous suspensions were prepared by mixing DI water, sucrose, cationic dispersant …


Restoration Of Strength In Polyamide Woven Glass Fiber Organosheets By Hot Pressing, Mohammad Nazmus Saquib, Edwing Chaparro-Chavez, Christopher Morris, Kuthan Çelebi, Diego Pedrazzoli, Mingfu Zhang, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Restoration Of Strength In Polyamide Woven Glass Fiber Organosheets By Hot Pressing, Mohammad Nazmus Saquib, Edwing Chaparro-Chavez, Christopher Morris, Kuthan Çelebi, Diego Pedrazzoli, Mingfu Zhang, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Thermoplastic composite organosheets (OSs) are increasingly recognized as a viable solution for automotive and aerospace structures, offering a range of benefits including cost-effectiveness through high-rate production, lightweight design, impact resistance, formability, and recyclability. This study examines the impact response, post-impact strength evaluation, and hot-pressing repair effectiveness of woven glass fiber nylon composite OSs across varying impact energy levels. Experimental investigations involved subjecting composite specimens to impact at varying energy levels using a drop-tower test rig, followed by compression-after-impact (CAI) tests. The results underscore the exceptional damage tolerance and improved residual compressive strength of the OSs compared to traditional thermoset composites. …