Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

E-Cadherin Force Transmission And Stiffness Sensing, Mazen Mezher May 2023

E-Cadherin Force Transmission And Stiffness Sensing, Mazen Mezher

Mechanical & Aerospace Engineering Theses & Dissertations

E-cadherin is the chief mediator of cell-cell adhesion between epithelial cells and is a known mechanosensor. Force transmission and stiffness sensing are two crucial aspects of E-cadherin mechanobiology.

E-cadherin has an extracellular adhesive region, a transmembrane region and an intracellular region that binds to adhesion-associated proteins. Here, we assessed how different factors affect the level of force transmission (i) from inside the cell such as adhesion-associated proteins, (ii) on the cell membrane, such as growth factor receptors and (iii) outside the cell, such as different binding partners in adhesion. To study the level of force transmission inside the cell, we …


Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali Jul 2019

Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali

Mechanical & Aerospace Engineering Theses & Dissertations

In epithelial tissues, epithelial cells adhere to each other as well as to the underlying extra-cellular matrix (ECM). E-cadherin-based intercellular junctions play an important role in tissue integrity. These junctions experience cell-generated mechanical forces via apparent adaptor proteins such as beta (β) catenin, alpha (α) catenin and vinculin. Abnormalities in these junctions may result in skin related diseases and cancers. Here, I devised methods to determine the endogenous intercellular force within cell pairs as well as in large epithelial islands. I further ascertained the factors that affect the level of inter-cellular tension.

Experiments with pairs of epithelial cells exogenously expressing …


Accurate Flexible Refinement Of Atomic Models Against Medium-Resolution Cryo-Em Maps Using Damped Dynamics, Julio A. Kovacs, Vitold E. Galkin, Willy Wriggers Sep 2018

Accurate Flexible Refinement Of Atomic Models Against Medium-Resolution Cryo-Em Maps Using Damped Dynamics, Julio A. Kovacs, Vitold E. Galkin, Willy Wriggers

Mechanical & Aerospace Engineering Faculty Publications

Background: Dramatic progress has recently been made in cryo-electron microscopy technologies, which now make possible the reconstruction of a growing number of biomolecular structures to near-atomic resolution. However, the need persists for fitting and refinement approaches that address those cases that require modeling assistance.

Methods: In this paper, we describe algorithms to optimize the performance of such medium-resolution refinement methods. These algorithms aim to automatically optimize the parameters that define the density shape of the flexibly fitted model, as well as the time-dependent damper cutoff distance. Atomic distance constraints can be prescribed for cases where extra containment of parts of …


Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu Feb 2017

Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu

Mechanical & Aerospace Engineering Faculty Publications

The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na, Ca2+, K channels). …


A Microfluidic Device For Impedance Spectroscopy, Ahmet Can Sabuncu Jan 2011

A Microfluidic Device For Impedance Spectroscopy, Ahmet Can Sabuncu

Mechanical & Aerospace Engineering Theses & Dissertations

Recently, microfluidics has become a versatile tool to investigate cellular biology and to build novel biomedical devices. Dielectric spectroscopy, on the other hand, allows non-invasive probing of biological cells. Information on the cell membrane, cytoplasm, and nucleus can be obtained by dielectric spectroscopy provided that appropriate tools are used in specific frequency ranges. This dissertation includes fabrication, characterization, and testing of a simple microfluidic device to measure cell dielectric properties. The dielectric measurements are performed on human T-cell leukemia (Jurkat), mouse melanoma (B16), mouse hepatoma (Hepa), and human costal chondrocyte cells. Dielectric measurements consist of measuring the complex impedance of …