Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 110

Full-Text Articles in Mechanical Engineering

Development Of An Engineering Diagram For Additively Manufactured Austenitic Stainless Steel Alloys, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley Aug 2018

Development Of An Engineering Diagram For Additively Manufactured Austenitic Stainless Steel Alloys, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Austenitic stainless steels are the most widely applied types of stainless steels, due to their good weldability and high corrosion resistance. A number of engineering diagrams exist for the purpose of providing insight into the behavior of these steels. Examples of these diagrams are constitution diagrams (aka Schaeffler Diagrams) which are used to approximate the solidification path of the alloy and the amount of retained ferrite in the solidified matrix. Other diagrams are the Suutala diagram, which approximates cracking susceptibility, and microstructural maps, which predict the solidification path by varying a processing parameter, such as cooling rate. By combining these …


The Influence Of Build Parameters On The Compressive Properties Of Selective Laser Melted 304l Stainless Steel, Okanmisope Fashanu, Mario F. Buchely, R. Hussein, S. Anandan, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, M. A. Walker Aug 2018

The Influence Of Build Parameters On The Compressive Properties Of Selective Laser Melted 304l Stainless Steel, Okanmisope Fashanu, Mario F. Buchely, R. Hussein, S. Anandan, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, M. A. Walker

Materials Science and Engineering Faculty Research & Creative Works

Process parameters used during Selective Laser Melting (SLM) process have significant effects on the mechanical properties of the manufactured parts. In this study, the influence of two build parameters (build orientation and hatch angle) on the compressive properties of 304L stainless steel was evaluated. SLM 304L samples were manufactured using three hatch angles, 0°, 67°,105° and two orientations, z-direction and x-direction, and tested using a compression frame according to ASTM E9-09. Bulk density was measured according to ASTM C373-17 before compression. Properties evaluated were the bulk density, yield strength, strength at 15% plastic-strain and strength at 30% plastic-strain. Results showed …


Characterization Of Impact Toughness Of 304l Stainless Steel Fabricated Through Laser Powder Bed Fusion Process, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk Aug 2018

Characterization Of Impact Toughness Of 304l Stainless Steel Fabricated Through Laser Powder Bed Fusion Process, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this research, the impact toughness of powder bed based additively manufactured 304L stainless steel was investigated. Charpy specimens were built in vertical, horizontal and inclined (45⁰) orientations to investigate the variation in toughness with build direction. These specimens were tested in as-built and machined conditions. A significant difference in toughness was observed with varying build directions. The lowest toughness values were recorded when the notch was oriented in line with the interlayer boundary. The highest toughness was recorded when the notch was perpendicular to the interlayer boundary. A significant scatter in toughness values was also observed. The variation and …


Effect Of Wall Thickness And Build Quality On The Compressive Properties Of 304l Thin-Walled Structures Fabricated By Slm, Myranda Spratt, Sudharshan Anandan, Rafid M. Hussein, Joseph William Newkirk, K. Chandrashekhara, Heath Misak, Michael Walker Aug 2018

Effect Of Wall Thickness And Build Quality On The Compressive Properties Of 304l Thin-Walled Structures Fabricated By Slm, Myranda Spratt, Sudharshan Anandan, Rafid M. Hussein, Joseph William Newkirk, K. Chandrashekhara, Heath Misak, Michael Walker

Materials Science and Engineering Faculty Research & Creative Works

The specific strength of lightweight lattice structures built with SLM is of interest to the aerospace industry. Honeycombs were manufactured with increasing wall thicknesses (which increases density) and tested under compression. The optimal strength to density ratio was determined from the resulting data. The build quality was also evaluated to determine how/if the results were influenced by the specimen quality. Differences between the nominal and as-built geometry were identified, but considered to be minimal. Microstructural evaluation of the specimens revealed a possible dependence on the ‘border scan’ properties, as the thickness of the specimens was such that the board scan …


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties. …


Investigation On Ti6al4v-V-Cr-Fe-Ss316 Multi-Layers Metallic Structure Fabricated By Laser 3d Printing, Wei Li, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer Dec 2017

Investigation On Ti6al4v-V-Cr-Fe-Ss316 Multi-Layers Metallic Structure Fabricated By Laser 3d Printing, Wei Li, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Joining titanium alloy and stainless steel is becoming an urgent need since their outstanding mechanical properties can be utilized integratedly. However, direct fusion joining of Ti6Al4V to SS316 can cause brittle Ti-Fe intermetallics which compromise join bonds’ mechanical properties. In this research, Laser 3D Printing was applied to explore a new Ti6Al4V to SS316 multi-metallic structure. A novel filler transition route was introduced (Ti6Al4V → V → Cr → Fe → SS316) to avoid the Ti-Fe intermetallics. Two experimental cases were performed for comparison to evaluate this novel route’s effect. In the first case, SS316 layer was directly deposited on …


Studying Chromium And Nickel Equivalency To Identify Viable Additive Manufacturing Stainless Steel Chemistries, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley Aug 2017

Studying Chromium And Nickel Equivalency To Identify Viable Additive Manufacturing Stainless Steel Chemistries, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Chromium and nickel equivalency modeling has long been used in welding to determine the weldability of steel chemistries. A study was conducted to determine the applicability of Cr-Ni modeling to the additive manufacturing process. Many AM methods involve rapid solidification of small melt pools, similar to welding. Chemistries with varying Cr/Ni ratios were selected for use in a selective laser melting process and modeled using known models. Initial results indicate that the standard "safe welding zone" may not directly apply to additive manufacturing. The capability to build with chemistries outside the weldability “safe zone” could result in improved and varied …


Building Zr-Based Metallic Glass Part On Ti-6al-4v Substrate By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Building Zr-Based Metallic Glass Part On Ti-6al-4v Substrate By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Through using Zr intermediate layers, Zr52.5Ti5Al10Ni14.6Cu17.9 metallic glass (MG) parts are successfully built on Ti-6Al-4V substrates by laser-foil-printing (LFP) additive manufacturing technology in which MG foils are laser welded layer-by-layer onto the substrate. The printed MG part is free of porosity, cracking and crystallization; additionally, its glass transition temperature, crystallization temperature, micro-hardness, and tensile strength are very similar to the original MG material. The Zr intermediate layers are aimed at preventing direct interaction between the first layer of MG foil and the Ti substrate; otherwise, the welded MG foils would peel …


Aluminum Matrix Syntactic Foam Fabricated With Additive Manufacturing, M. Spratt, Joseph William Newkirk, K. Chandrashekhara Aug 2017

Aluminum Matrix Syntactic Foam Fabricated With Additive Manufacturing, M. Spratt, Joseph William Newkirk, K. Chandrashekhara

Materials Science and Engineering Faculty Research & Creative Works

Syntactic foams are lightweight structural composites with hollow reinforcing particles embedded in a soft matrix. These materials have applications in transportation, packaging, and armor due to properties such as relatively high specific stiffness, acoustic dampening, and impact absorption. Aluminum matrices are the most widely studied of metal matrix syntactic foams, but there is little to no research in regards to processing the foams with additive manufacturing. It is theorized that the fast cooling rates and limited kinetic energy input of additive could reduce two issues commonly associated with processing syntactic foams: microsphere flotation in the melt and microsphere fracture during …


Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas Aug 2017

Fabricating Zirconia Parts With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70 ⁰C to melt the PCL. The part is then …


Design And Fabrication Of Functionally Graded Material From Ti To Γ-Tial By Laser Metal Deposition, Xueyang Chen, Lei Yan, Joseph William Newkirk, Frank W. Liou Aug 2017

Design And Fabrication Of Functionally Graded Material From Ti To Γ-Tial By Laser Metal Deposition, Xueyang Chen, Lei Yan, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

Functionally graded material (FGM) is one kind of advanced material characterized by a gradual change in properties as the position varies. The spatial variation of compositional and microstructure over volume is aimed to control corresponding functional properties. In this research, when 100% γ-TiAl was directly deposited on pure Ti substrate, cracks were formed within the γ-TiAl layer. Then a six-layer crack-free functionally graded material of Ti/TiAl was designed and fabricated by laser metal deposition (LMD) method, with composition changing from pure Ti on one side to 100% γ-TiAl on the other side. The fabricated FGM was characterized for material properties …


Effects Of Area Fraction And Part Spacing On Degradation Of 304l Stainless Steel Powder In Selective Laser Melting, Cairlin S. Kriewall, Austin T. Sutton, Sreekar Karnati, Joseph William Newkirk, Ming-Chuan Leu Aug 2017

Effects Of Area Fraction And Part Spacing On Degradation Of 304l Stainless Steel Powder In Selective Laser Melting, Cairlin S. Kriewall, Austin T. Sutton, Sreekar Karnati, Joseph William Newkirk, Ming-Chuan Leu

Materials Science and Engineering Faculty Research & Creative Works

In selective laser melting (SLM) systems, a large portion of powder remains unconsolidated and therefore recycling powder could make SLM more economical. Currently, a lack of literature exists specifically targeted at studying the reusability of powder. Furthermore, the definition of powder reusability is complex since powder degradation depends on many factors. The goal of the current research is to investigate the effects of area fraction and part spacing on the degradation of 304L powder in SLM. An experimental study was conducted where various area fractions and part distances were chosen and powder characterization techniques for determination of particle size distributions, …


Characterization Of Heat-Affected Powder Generated During Selective Laser Melting Of 304l Stainless Steel Powder, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2017

Characterization Of Heat-Affected Powder Generated During Selective Laser Melting Of 304l Stainless Steel Powder, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The selective laser melting (SLM) process is an Additive Manufacturing (AM) technique that uses a laser to fuse successive layers of powder into near fully dense components. Due to the large energy input from the laser during processing, vaporization and instabilities in the melt pool occur causing the formation of condensate and laser spatter, collectively known as heat-affected powder. Since heat-affected powder settles into the powder bed, the properties of the unconsolidated powder may be altered compromising its reusability. In this study, characterization of 304L heat-affected powder was performed through particle size distribution measurements, x-ray diffraction, metallography, energy-dispersive spectroscopy mapping, …


Influence Of Gage Length On Miniature Tensile Characterization Of Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Frank W. Liou, Joseph William Newkirk Aug 2017

Influence Of Gage Length On Miniature Tensile Characterization Of Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Miniature tensile specimens with varying aspect ratios were fabricated from 304L stainless steel (SS) made using powder bed additive manufacturing (AM) process. The tensile characteristics measured from these specimens were analyzed to assess the impact of gage length. The study found no impact upon varying gage length on yield and ultimate strength measurements. However, a significant impact was observed on strain measurements. This data was also used to perform Weibull statistics to estimate the stochastic performance of the material. Fractography was performed to visually identify the types of flaws. A comparative study with specimens fabricated from cold rolled annealed 304 …


Bonding Of 304l Stainless Steel To Cast Iron By Selective Laser Melting, Baily Thomas, Austin T. Sutton, Ming-Chuan Leu, Nikhil Doiphode Aug 2017

Bonding Of 304l Stainless Steel To Cast Iron By Selective Laser Melting, Baily Thomas, Austin T. Sutton, Ming-Chuan Leu, Nikhil Doiphode

Mechanical and Aerospace Engineering Faculty Research & Creative Works

While cast iron is widely used in industry, a major limitation is the weldability of a dissimilar material onto cast iron due to hot cracking as a result of lack of ductility from graphite flakes. Consequently, a significant amount of preheat is often employed to reduce the cooling rate in the fusion zone, which, however, may lead to distortion of the welded parts. A potential remedy could be the Selective Laser Melting (SLM) process, where only small melt pools are created and thus the overall energy input is reduced. The present paper describes an investigation of the SLM process to …


Fabricating Zirconia Components With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas Aug 2017

Fabricating Zirconia Components With Organic Support Material By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Andrew Scherff, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. This paper presents a further development of this process and focuses on fabricating 3 mol% yttria-stabilized zirconia (3YSZ) components that cannot be fabricated without using support structures. The 3YSZ paste is deposited through the main nozzle, and a polycaprolactone (PCL) pellet feedstock is melted and deposited through an auxiliary nozzle to build support structures. After a green part is printed and dried, the support structures are removed by heating the part to ~70°C to melt the PCL. The part is then sintered …


Mechanical Properties Of 304l Parts Made By Laser-Foil-Printing Technology, Chia-Hung Hung, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai Aug 2017

Mechanical Properties Of 304l Parts Made By Laser-Foil-Printing Technology, Chia-Hung Hung, Yiyu Shen, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser-Foil-Printing (LFP) is a novel laminated object manufacturing process for metal additive manufacturing. It fabricates three-dimensional metal parts by using a dual-laser system to weld and cut metal foils layer by layer. A main advantage of LFP is the higher cooling rate compared to powder-based laser additive manufacturing processes due to the thermal conductivity difference between foil and powder. This study focuses on the mechanical properties of 304L stainless steel parts built by the LFP process. The experimental results indicate that the yield strength and ultimate tensile strength of LFP fabricated 304L SS parts are higher by 9% and 8% …


Investigation Of Build Strategies For A Hybrid Manufacturing Process Progress On Ti-6al-4v, Lei Yan, Leon Hill, Frank W. Liou, Joseph William Newkirk Aug 2017

Investigation Of Build Strategies For A Hybrid Manufacturing Process Progress On Ti-6al-4v, Lei Yan, Leon Hill, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The various processing parameters of a hybrid manufacturing process, including deposition and machining, is being investigated with a Design of Experiment (DoE). The intent was to explore the effect of different build strategies on the final part’s Vickers hardness, tensile test, fatigue life, and microstructure. From this experiment, the processing parameters can be linked to various mechanical properties. This will lead to the ability to create a combination of deposition and machining parameters, which will result in improved mechanical properties.


A Two-Dimensional Simulation Of Grain Structure Growth Within Substrate And Fusion Zone During Direct Metal Deposition, Jingwei Zhang, Wei Li, Frank W. Liou, Joseph William Newkirk Aug 2017

A Two-Dimensional Simulation Of Grain Structure Growth Within Substrate And Fusion Zone During Direct Metal Deposition, Jingwei Zhang, Wei Li, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, a predictive model based on a cellular automaton (CA)-finite element (FE) method has been developed to simulate thermal history and microstructure evolution during metal solidification for a laser-based additive manufacturing process. The macroscopic FE calculation that is validated by thermocouple experiment is designed to update the temperature field and a high cooling rate. A cellular automata-finite element (CAFE) method is developed to describe grain growth in the fusion zone. In the mesoscopic CA model, heterogeneous nucleation sites, grain growth orientation and rate, epitaxial growth, remelting of preexisting grains, metal addition, grain competitive growth, and columnar to equiaxed …


Solvent Based 3d Printing Of Biopolymer/Bioactive Glass Composite And Hydrogel For Tissue Engineering Applications, Krishna Kolan, Yong Liu, Jakeb Baldridge, Caroline Murphy, Julie A. Semon, D. E. Day, Ming-Chuan Leu Jul 2017

Solvent Based 3d Printing Of Biopolymer/Bioactive Glass Composite And Hydrogel For Tissue Engineering Applications, Krishna Kolan, Yong Liu, Jakeb Baldridge, Caroline Murphy, Julie A. Semon, D. E. Day, Ming-Chuan Leu

Biological Sciences Faculty Research & Creative Works

Three-dimensional (3D) bioprinting is an emerging technology in which scaffolding materials and cell-laden hydrogels may be deposited in a pre-determined fashion to create 3D porous constructs. A major challenge in 3D bioprinting is the slow degradation of melt deposited biopolymer. In this paper, we describe a new method for printing poly-caprolactone (PCL)/bioactive borate glass composite as a scaffolding material and Pluronic F127 hydrogel as a cell suspension medium. Bioactive borate glass was added to a mixture of PCL and organic solvent to make an extrudable paste using one syringe while hydrogel was extruded and deposited in between the PCL/borate glass …


3d Bioprinting Of Stem Cells And Polymer/Bioactive Glass Composite Scaffolds For Bone Tissue Engineering, Caroline Murphy, Krishna Kolan, Wenbin Li, Julie A. Semon, D. E. Day, Ming-Chuan Leu Jan 2017

3d Bioprinting Of Stem Cells And Polymer/Bioactive Glass Composite Scaffolds For Bone Tissue Engineering, Caroline Murphy, Krishna Kolan, Wenbin Li, Julie A. Semon, D. E. Day, Ming-Chuan Leu

Biological Sciences Faculty Research & Creative Works

A major limitation of using synthetic scaffolds in tissue engineering applications is insufficient angiogenesis in scaffold interior. Bioactive borate glasses have been shown to promote angiogenesis. There is a need to investigate the biofabrication of polymer composites by incorporating borate glass to increase the angiogenic capacity of the fabri-cated scaffolds. In this study, we investigated the bioprinting of human adipose stem cells (ASCs) with a polycaprolac-tone (PCL)/bioactive borate glass composite. Borate glass at the concentration of 10 to 50 weight %, was added to a mixture of PCL and organic solvent to make an extrudable paste. ASCs suspended in Matrigel …


Elevated Temperature Microstructure Stability Of Slm 304l Stainless Steel, Tarak Amine, Joseph William Newkirk Aug 2016

Elevated Temperature Microstructure Stability Of Slm 304l Stainless Steel, Tarak Amine, Joseph William Newkirk

Materials Science and Engineering Faculty Research & Creative Works

With time at temperature, changes in metallurgical structure can be expected for almost any steel or alloy. In stainless steels, the changes can be grain growth, carbide precipitation, ferrite decomposition, or embrittlement. These phenomena can significantly effect the properties of the steel and would potentially change the functionality of the component. Therefore, to determine component stability, the elevated temperature microstructure stability of additive manufacturing materials was studied. This work investigates the influence of different aging times of additive material stainless steels (304L) fabricated with the Selective Laser Melting (SLM) process on microstructure and mechanical properties. Microstructure and mechanical properties were …


Investigation Of Tensile Properties Of Bulk And Slm Fabricated 304l Stainless Steel Using Various Gage Length Specimens, Sreekar Karnati, I. Axelsen, Frank W. Liou, Joseph William Newkirk Aug 2016

Investigation Of Tensile Properties Of Bulk And Slm Fabricated 304l Stainless Steel Using Various Gage Length Specimens, Sreekar Karnati, I. Axelsen, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The complex solidification dynamics and thermal cycling during Selective Laser Melting process is expected to result in non-equilibrium material characteristics. There is an essential need for characterization techniques which are critical towards the estimation of anisotropies. The current investigation is targeted towards establishing tensile testing methodologies and their relation to differing gage lengths. Dog-bone shaped specimen designs with gage lengths of 1”, 0.3” and 0.12” were employed in this research. The characterization was performed on hot rolled-annealed 304 stainless and SLM fabricated 304L stainless. It was theorized that smaller gage length specimens would be instrumental in mapping material property anisotropy …


Simulation Of Cooling Rate Effects On Ti-48al-2cr-2nb Crack Formation In Direct Laser Deposition, Lei Yan, Wei Li, Xueyang Chen, Yunlu Zhang, Joseph William Newkirk, Frank W. Liou, David Dietrich Aug 2016

Simulation Of Cooling Rate Effects On Ti-48al-2cr-2nb Crack Formation In Direct Laser Deposition, Lei Yan, Wei Li, Xueyang Chen, Yunlu Zhang, Joseph William Newkirk, Frank W. Liou, David Dietrich

Materials Science and Engineering Faculty Research & Creative Works

Transient temperature history is vital in direct laser deposition (DLD) because it reveals the cooling rate at specific temperatures, which directly relates to phase transformation and types of microstructure formed in deposit. FEA simulation was employed to study the transient temperature history and cooling rate at different experimental setups in Ti-48Al-2Cr-2Nb DLD process. In this paper, an innovative model was described, which combines a moving Gaussian distribution heat source and element birth and death technology in ANSYS, help to analysis cooling rate control method and guide crack-free deposits build process.


Powders For Additive Manufacturing Processes: Characterization Techniques And Effects On Part Properties, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2016

Powders For Additive Manufacturing Processes: Characterization Techniques And Effects On Part Properties, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Powder-bed based Additive Manufacturing is a class of Additive Manufacturing (AM) processes that bond successive layers of powder by laser melting to facilitate the creation of parts with complex geometries. As AM technology transitions from the fabrication of prototypes to end-use parts, the understanding of the powder properties needed to reliably produce parts of acceptable quality becomes critical. Consequently, this has led to the use of powder characterization techniques such as scanning electron microscopy (SEM), laser light diffraction, x-ray photoelectron spectroscopy (XPS), and differential thermal analysis (DTA) to both qualitatively and quantitatively study the effect of powder characteristics on part …


Investigation Of Heat-Affected 304l Ss Powder And Its Effect On Built Parts In Selective Laser Melting, Caitlin S. Kriewall, Austin T. Sutton, Ming-Chuan Leu, Joseph William Newkirk, Ben Brown Aug 2016

Investigation Of Heat-Affected 304l Ss Powder And Its Effect On Built Parts In Selective Laser Melting, Caitlin S. Kriewall, Austin T. Sutton, Ming-Chuan Leu, Joseph William Newkirk, Ben Brown

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective laser melting (SLM) is a powder bed based additive manufacturing process in which a layer of powder is laid over the surface of a substrate and a laser with sufficient energy is employed to selectively melt particles to build a part layer by layer. During the SLM process, dark smoke was observed coming off of the powder bed surface where the laser was interacting with powder. This phenomenon resulted from heat-affected powder that was visibly different than the base powder. Since the concentration of the heat-affected powder differs throughout the build chamber as a result of the recirculating argon …


Effect Of Powder Particle Size On The Fabrication Of Ti-6al-4v Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen, Lei Yan, Wei Li, Frank W. Liou, Joseph William Newkirk Aug 2016

Effect Of Powder Particle Size On The Fabrication Of Ti-6al-4v Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen, Lei Yan, Wei Li, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Direct Laser Metal Deposition (LMD) was used to fabricate thin-wall Ti-6Al-4V using the powder mixture of Ti-6 wt.%Al-4 wt.%V. Scanning electron microscopy (SEM), optical microscopy (OM) and energy dispersive spectroscopy (EDS) were employed to examine the chemical composition and microstructure of the as-deposited sections. Vickers hardness tests were then applied to characterize the mechanical properties of the deposit samples which were fabricated using pre-mixed elemental powders. The EDS line scans indicated that the chemical composition of the samples was homogenous across the deposit. X-ray diffraction (XRD) was used for the phase identification. After significant analysis, some differences were observed among …


Modeling And Experimental Investigation Of Pre-Mixed Multi-Powder Flow In Fabricating Functional Gradient Material By Laser Metal Deposition Process, Wei Li, Jingwei Zhang, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, W. L. Seufzer Aug 2016

Modeling And Experimental Investigation Of Pre-Mixed Multi-Powder Flow In Fabricating Functional Gradient Material By Laser Metal Deposition Process, Wei Li, Jingwei Zhang, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, W. L. Seufzer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Metal Deposition (LMD) is an effective process to fabricate Functionally Graded Material (FGM) from pre-mixed powders. Since the supplied multi-powder directly affects the deposited FGM’s composition, investigation on Pre-Mixed Multi-Powder (PMMP) flow during LMD is greatly needed. This paper presents a comprehensive numerical PMMP flow model. By solving discrete particle force balance equations coupled with continuity equations and momentum equations for carrier gas, the dynamic behavior of PMMP flow through powder feeder tube and out of nozzle was calculated. With this model, the particle sizes of multi-powder were optimized to obtain considered FGM composition. To verify the modeling results, …


Proposed Hybrid Processes For Part Building Using Fusion Welding And Friction Stir Processing, Megan A. Gegesky, Frank W. Liou, Joseph William Newkirk Aug 2016

Proposed Hybrid Processes For Part Building Using Fusion Welding And Friction Stir Processing, Megan A. Gegesky, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

It has been shown that a hybrid laser additive manufacturing and friction stir processing can deposit components with forged-like structures. This paper reports a hybrid fusion welding and friction stir process to create parts with quality structures. Combining traditional fusion welding and friction stir processing techniques for non-weldable aluminum alloys could facilitate the joining of difficult geometries in manufactured parts. This research illustrates mechanical property changes for non-weldable and weldable aluminum alloys. The Vickers hardness, and microhardness in the case of AA5052-H32, tensile strength and corrosion resistance of four processing states: base material, fusion welded material, friction stir welded material, …


3d Printing Of A Polymer Bioactive Glass Composite For Bone Repair, Caroline Murphy, Krishna C. R. Kolan, M. Long, Ming-Chuan Leu, Julie A. Semon, D. E. Day Aug 2016

3d Printing Of A Polymer Bioactive Glass Composite For Bone Repair, Caroline Murphy, Krishna C. R. Kolan, M. Long, Ming-Chuan Leu, Julie A. Semon, D. E. Day

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A major limitation of synthetic bone repair is insufficient vascularization of the interior region of the scaffold. In this study, we investigated the 3D printing of adipose derived mesenchymal stem cells (AD-MSCs) with polycaprolactone (PCL)/bioactive glass composite in a single process. This offered a three-dimensional environment for complex and dynamic interactions that govern the cell’s behavior in vivo. Borate based bioactive (13-93B3) glass of different concentrations (10 to 50 weight %) was added to a mixture of PCL and organic solvent to make an extrudable paste. AD-MSCs suspended in Matrigel was extruded as droplets using a second syringe. Scaffolds measuring …