Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

The Influence Of Build Parameters On The Compressive Properties Of Selective Laser Melted 304l Stainless Steel, Okanmisope Fashanu, Mario F. Buchely, R. Hussein, S. Anandan, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, M. A. Walker Aug 2018

The Influence Of Build Parameters On The Compressive Properties Of Selective Laser Melted 304l Stainless Steel, Okanmisope Fashanu, Mario F. Buchely, R. Hussein, S. Anandan, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, M. A. Walker

Materials Science and Engineering Faculty Research & Creative Works

Process parameters used during Selective Laser Melting (SLM) process have significant effects on the mechanical properties of the manufactured parts. In this study, the influence of two build parameters (build orientation and hatch angle) on the compressive properties of 304L stainless steel was evaluated. SLM 304L samples were manufactured using three hatch angles, 0°, 67°,105° and two orientations, z-direction and x-direction, and tested using a compression frame according to ASTM E9-09. Bulk density was measured according to ASTM C373-17 before compression. Properties evaluated were the bulk density, yield strength, strength at 15% plastic-strain and strength at 30% plastic-strain. Results showed …


Effect Of Wall Thickness And Build Quality On The Compressive Properties Of 304l Thin-Walled Structures Fabricated By Slm, Myranda Spratt, Sudharshan Anandan, Rafid M. Hussein, Joseph William Newkirk, K. Chandrashekhara, Heath Misak, Michael Walker Aug 2018

Effect Of Wall Thickness And Build Quality On The Compressive Properties Of 304l Thin-Walled Structures Fabricated By Slm, Myranda Spratt, Sudharshan Anandan, Rafid M. Hussein, Joseph William Newkirk, K. Chandrashekhara, Heath Misak, Michael Walker

Materials Science and Engineering Faculty Research & Creative Works

The specific strength of lightweight lattice structures built with SLM is of interest to the aerospace industry. Honeycombs were manufactured with increasing wall thicknesses (which increases density) and tested under compression. The optimal strength to density ratio was determined from the resulting data. The build quality was also evaluated to determine how/if the results were influenced by the specimen quality. Differences between the nominal and as-built geometry were identified, but considered to be minimal. Microstructural evaluation of the specimens revealed a possible dependence on the ‘border scan’ properties, as the thickness of the specimens was such that the board scan …


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties. …