Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Mechanical Engineering

Experimental Characterization Of A Direct Metal Deposited Cobalt-Based Alloy On Tool Steel For Component Repair, Xinchang Zhang, Tan Pan, Wei Li, Frank W. Liou Aug 2018

Experimental Characterization Of A Direct Metal Deposited Cobalt-Based Alloy On Tool Steel For Component Repair, Xinchang Zhang, Tan Pan, Wei Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Die casting dies made of tool steel is subject to impact, abrasion and cyclic thermomechanical loading that delivers damage such as wear, corrosion, and cracking. To repair such defects, materials enveloping the damage need to be machined and refilled. In this study, V-shape defects with varied sidewall inclination angles were prepared on H13 tool steel substrates and refilled with cobalt-based alloy using direct metal deposition (DMD) for superior hardness and wear resistance. The microstructure of rebuild samples was characterized using an optical microscope (OM) and scanning electron microscope (SEM). Elemental distribution from the substrate to deposits was analyzed using energy …


Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu Aug 2018

Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu

Materials Science and Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. Presented in this paper is a further development of this process focusing on fabrication of functionally graded materials (FGM). A dynamic mixing mechanism was developed for mixing constituent ceramic pastes, and an extrusion control scheme was developed for fabricating specimens with desired material compositions graded in real time. FGM specimens with compositions graded between Al2O3 and ZrO2 were fabricated and ultimately densified by sintering to validate the effectiveness of the CODE process for FGM fabrication. Energy dispersive spectroscopy …


Additive Manufacturing Of Metal Bandpass Filters For Future Radar Receivers, Bradley Grothaus, Dane Huck, Austin T. Sutton, Ming-Chuan Leu, Ben Brown Aug 2018

Additive Manufacturing Of Metal Bandpass Filters For Future Radar Receivers, Bradley Grothaus, Dane Huck, Austin T. Sutton, Ming-Chuan Leu, Ben Brown

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective laser melting (SLM) is a powder-bed fusion (PBF) process that bonds successive layers of powder with a laser to create components directly from computer-aided design (CAD) files. The additive nature of the SLM process in addition to the use of fine powders facilitates the construction of complex geometries, which has captured the attention of those involved in the design of bandpass filters for radar applications. However, a significant drawback of SLM is its difficulty in fabricating parts with overhangs necessitating the use of support structures, which, if not removed, can greatly impact the performance of bandpass filters. Therefore, in …


Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Aug 2018

Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During part fabrication by selective laser melting (SLM), a powder-bed fusion process in Additive Manufacturing (AM), a large amount of energy is input from the laser into the melt pool, causing generation of spatter and condensate, both of which have the potential to settle in the surrounding powder-bed compromising its reusability. In this study, 304L stainless steel powder is subjected to five reuses in the SLM process to assess its recyclability through characterization of both powder and mechanical properties. Powder was characterized morphologically by particle size distribution measurements, oxygen content with inert gas fusion analysis, and phase identification by X-ray …


Frequency Response Inspection Of Additively Manufactured Parts For Defect Identification, Kevin Johnson, Jason Blough, Andrew Barnard, Troy Hartwig, Ben Brown, David Soine, Tristan Collum, Edward C. Kinzel, Douglas A. Bristow, Robert G. Landers Aug 2018

Frequency Response Inspection Of Additively Manufactured Parts For Defect Identification, Kevin Johnson, Jason Blough, Andrew Barnard, Troy Hartwig, Ben Brown, David Soine, Tristan Collum, Edward C. Kinzel, Douglas A. Bristow, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The goal of this paper is to evaluate internal defects in AM parts using dynamic measurements. The natural frequencies of AM parts can be identified by measuring the response of the part(s) to a dynamic input. Different excitation methods such as a modal impact hammer or shakers can be used to excite the parts. Various methods exist to measure the parts' responses and find the natural frequencies. This paper will investigate the use of Doppler lasers, accelerometers and Digital Image Correlation (DIC). The parts evaluated in this work include sets of parts that are still attached to the AM build …


General Rules For Pre-Process Planning In Powder Bed Fusion System -- A Review, Tan Pan, Sreekar Karnati, Frank W. Liou Aug 2018

General Rules For Pre-Process Planning In Powder Bed Fusion System -- A Review, Tan Pan, Sreekar Karnati, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Powder bed fusion (PBF) is one of the current additive manufacturing techniques that can fabricate almost fully dense functional metal components. Through a layer by layer fabrication methodology, complex geometries to meet the requirements of aerospace, automotive, biomedicine industries, etc. can be produced. The success of a build largely depends on having a flawless pre-process planning, including build orientation selection, support structure optimization, process parameter chosen, etc., which closely relates to the quality of the final products. Geometric inaccuracy and poor surface quality can occur due to a bad build plan. This review presents the crucial general planning rules for …


Fiber-Fed Printing Of Free-Form Free-Standing Glass Structures, John M. Hostetler, Jason E. Johnson, Jonathan T. Goldstein, Douglas A. Bristow, Robert G. Landers, Edward C. Kinzel Aug 2018

Fiber-Fed Printing Of Free-Form Free-Standing Glass Structures, John M. Hostetler, Jason E. Johnson, Jonathan T. Goldstein, Douglas A. Bristow, Robert G. Landers, Edward C. Kinzel

Materials Science and Engineering Faculty Research & Creative Works

Additive Manufacturing (AM) of low-profile 2.5D glass structures has been demonstrated using a fiber-fed laser-heated process. In this process, glass fibers with diameters 90-125 μm are supported as they are fed into the intersection of the workpiece and a CO2 laser beam. The workpiece is positioned by a four-axis CNC stage with coordinated rotational/transitional kinematics. The laser energy at λ = 10.6 μm is coupled to phonon modes in the glass, locally heating it above its working point. The rapid heating and cooling process allows for the deposition of various glasses into free-standing three-dimensional structures such as trusses and …


Effect Of Wall Thickness And Build Quality On The Compressive Properties Of 304l Thin-Walled Structures Fabricated By Slm, Myranda Spratt, Sudharshan Anandan, Rafid M. Hussein, Joseph William Newkirk, K. Chandrashekhara, Heath Misak, Michael Walker Aug 2018

Effect Of Wall Thickness And Build Quality On The Compressive Properties Of 304l Thin-Walled Structures Fabricated By Slm, Myranda Spratt, Sudharshan Anandan, Rafid M. Hussein, Joseph William Newkirk, K. Chandrashekhara, Heath Misak, Michael Walker

Materials Science and Engineering Faculty Research & Creative Works

The specific strength of lightweight lattice structures built with SLM is of interest to the aerospace industry. Honeycombs were manufactured with increasing wall thicknesses (which increases density) and tested under compression. The optimal strength to density ratio was determined from the resulting data. The build quality was also evaluated to determine how/if the results were influenced by the specimen quality. Differences between the nominal and as-built geometry were identified, but considered to be minimal. Microstructural evaluation of the specimens revealed a possible dependence on the ‘border scan’ properties, as the thickness of the specimens was such that the board scan …


Fast Prediction Of Thermal History In Large-Scale Parts Fabricated Via A Laser Metal Deposition Process, Lei Yan, Tan Pan, Joseph William Newkirk, Frank W. Liou, Eric E. Thomas, Andrew H. Baker, James B. Castle Aug 2018

Fast Prediction Of Thermal History In Large-Scale Parts Fabricated Via A Laser Metal Deposition Process, Lei Yan, Tan Pan, Joseph William Newkirk, Frank W. Liou, Eric E. Thomas, Andrew H. Baker, James B. Castle

Materials Science and Engineering Faculty Research & Creative Works

Laser metal deposition (LMD) has become a popular choice for the fabrication of near-net shape complex parts. Plastic deformation and residual stresses are common phenomena that are generated from the intrinsic large thermal gradients and high cooling rates in the process. Finite element analysis (FEA) is often used to predict the transient thermal cycle and optimize processing parameters; however, the process of predicting the thermal history in the LMD process with the FEA method is usually time-consuming, especially for large-scale parts. Herein, multiple 3D FEA models with simple assumptions on the heat source and its loading methods are compared and …


Mechanical Properties Evaluation Of Ti-6al-4v Thin-Wall Structure Produced By A Hybrid Manufacturing Process, Lei Yan, Wenyuan Cui, Joseph William Newkirk, Frank W. Liou, Eric E. Thomas, Andrew H. Baker, James B. Castle Aug 2018

Mechanical Properties Evaluation Of Ti-6al-4v Thin-Wall Structure Produced By A Hybrid Manufacturing Process, Lei Yan, Wenyuan Cui, Joseph William Newkirk, Frank W. Liou, Eric E. Thomas, Andrew H. Baker, James B. Castle

Materials Science and Engineering Faculty Research & Creative Works

The hybrid manufacturing (HM) process combines the precision of computer numerical control (CNC) and the freeform capability of additive manufacturing to expand the versatility of advanced manufacturing. The intent of this paper is to explore the relationship between HM processing parameters and mechanical properties of the final parts manufactured by one type of HM process that combines laser metal deposition (LMD) and CNC milling. The design of experiment (DOE) is implemented to explore the Ti-6Al-4V thin-wall structure fabrication process with different HM build strategies. Vickers hardness, tensile test, and microstructure analyses are conducted to evaluate the mechanical property variance within …


Development Of An Engineering Diagram For Additively Manufactured Austenitic Stainless Steel Alloys, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley Aug 2018

Development Of An Engineering Diagram For Additively Manufactured Austenitic Stainless Steel Alloys, Zachary T. Hilton, Joseph William Newkirk, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Austenitic stainless steels are the most widely applied types of stainless steels, due to their good weldability and high corrosion resistance. A number of engineering diagrams exist for the purpose of providing insight into the behavior of these steels. Examples of these diagrams are constitution diagrams (aka Schaeffler Diagrams) which are used to approximate the solidification path of the alloy and the amount of retained ferrite in the solidified matrix. Other diagrams are the Suutala diagram, which approximates cracking susceptibility, and microstructural maps, which predict the solidification path by varying a processing parameter, such as cooling rate. By combining these …


The Influence Of Build Parameters On The Compressive Properties Of Selective Laser Melted 304l Stainless Steel, Okanmisope Fashanu, Mario F. Buchely, R. Hussein, S. Anandan, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, M. A. Walker Aug 2018

The Influence Of Build Parameters On The Compressive Properties Of Selective Laser Melted 304l Stainless Steel, Okanmisope Fashanu, Mario F. Buchely, R. Hussein, S. Anandan, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, M. A. Walker

Materials Science and Engineering Faculty Research & Creative Works

Process parameters used during Selective Laser Melting (SLM) process have significant effects on the mechanical properties of the manufactured parts. In this study, the influence of two build parameters (build orientation and hatch angle) on the compressive properties of 304L stainless steel was evaluated. SLM 304L samples were manufactured using three hatch angles, 0°, 67°,105° and two orientations, z-direction and x-direction, and tested using a compression frame according to ASTM E9-09. Bulk density was measured according to ASTM C373-17 before compression. Properties evaluated were the bulk density, yield strength, strength at 15% plastic-strain and strength at 30% plastic-strain. Results showed …


Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai Aug 2018

Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The application of bulk metallic glasses (BMGs) has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. This research exemplifies a promising additive manufacturing method, i.e., laser-foil-printing (LFP), to fabricate high-quality BMG parts with large dimensions and complex geometries. In this study, Zr52.5Ti5Al10Ni14.6Cu17.9 BMG parts were fabricated by LFP technology in which MG foils are laser welded layer-by- layer upon a substrate. The mechanical properties of the fabricated BMG parts were measured using micro-indentation, tensile test …


Additive Manufacturing Of Metal Functionally Graded Materials: A Review, Yitao Chen, Frank W. Liou Aug 2018

Additive Manufacturing Of Metal Functionally Graded Materials: A Review, Yitao Chen, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Functionally graded materials (FGMs) have attracted a lot of research interest due to their gradual variation in material properties that result from the non-homogeneous composition or structure. Metal FGMs have been widely researched in recent years, and additive manufacturing has become one of the most important approaches to fabricate metal FGMs. The aim of this paper is to review the research progress in metal FGMs by additive manufacturing. It will first introduce the unique properties and the advantages of FGMs. Then, typical recent findings in research and development of two major types of metal additive manufacturing methods, namely laser metal …


Effects Of Identical Parts On A Common Build Plate On The Modal Analysis Of Slm Created Metal, Tristan Cullom, Troy Hartwig, Ben Brown, Kevin Johnson, Jason Blough, Andrew Barnard, Robert G. Landers, Douglas A. Bristow, Edward C. Kinzel Aug 2018

Effects Of Identical Parts On A Common Build Plate On The Modal Analysis Of Slm Created Metal, Tristan Cullom, Troy Hartwig, Ben Brown, Kevin Johnson, Jason Blough, Andrew Barnard, Robert G. Landers, Douglas A. Bristow, Edward C. Kinzel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The frequency response of parts created with Additive Manufacturing (AM) is a function of not only process parameters, powder quality, but also the geometry of the part. Modal analysis has the potential to evaluate parts by measuring the frequency response which are a function of the material response as well as the geometry. A Frequency Response Function (FRF) serves as a fingerprint of the part which can be validated against the FRF of a destructively tested part. A practical scenario encountered in Selective Laser Melting (SLM) involves multiple parts on a common build plate. Coupling between parts influences the FRF …


Effect Of Environmental Variables On Ti-64 Am Simulation Results, Aaron Flood, Frank W. Liou Aug 2018

Effect Of Environmental Variables On Ti-64 Am Simulation Results, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In metal AM the environment is critical and therefore care should be taken to ensure that the simulation matches reality. This paper will investigate the effect that various environmental factors have on the results of the simulation. This will help to determine their importance in the simulation setup. The material properties which relate to this are the convective coefficient and the emissivity. These material properties will be investigated to determine their effect on the outcome of the simulation. In addition to these properties, the size of the substrate will be investigated to determine if any results are altered. Lastly, the …


Characterization Of Impact Toughness Of 304l Stainless Steel Fabricated Through Laser Powder Bed Fusion Process, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk Aug 2018

Characterization Of Impact Toughness Of 304l Stainless Steel Fabricated Through Laser Powder Bed Fusion Process, Sreekar Karnati, Atoosa Khiabhani, Aaron Flood, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this research, the impact toughness of powder bed based additively manufactured 304L stainless steel was investigated. Charpy specimens were built in vertical, horizontal and inclined (45⁰) orientations to investigate the variation in toughness with build direction. These specimens were tested in as-built and machined conditions. A significant difference in toughness was observed with varying build directions. The lowest toughness values were recorded when the notch was oriented in line with the interlayer boundary. The highest toughness was recorded when the notch was perpendicular to the interlayer boundary. A significant scatter in toughness values was also observed. The variation and …


Incorporation Of Automated Ball Indentation Methodology For Studying Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Aaron Flood, Frank W. Liou Aug 2018

Incorporation Of Automated Ball Indentation Methodology For Studying Powder Bed Fabricated 304l Stainless Steel, Sreekar Karnati, Jack L. Hoerchler, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Automated Ball Indentation (ABI) is a viable method for estimating the ductility, yield stress, and ultimate stress, among other metrics, in different metallic materials. Currently, ABI data analysis utilizes Holloman’s Power Law to model the plastic region of the true stress-true strain curve. While this formulation is accurate for some materials, its relevance for additively manufactured austenitic stainless steels, such as 304L, needed investigation. The deviation of the material’s plastic behavior from the Power Law was investigated. In order to better model this behavior, both the Voce and Ludwigson formulation were investigated. These formulations were tested for both wrought and …


In-Situ Optical Emission Spectroscopy During Slm Of 304l Stainless Steel, Cody S. Lough, Luis I. Escano, Minglei Qu, Christopher C. Smith, Robert G. Landers, Douglas A. Bristow, Lianyi Chen, Edward C. Kinzel Aug 2018

In-Situ Optical Emission Spectroscopy During Slm Of 304l Stainless Steel, Cody S. Lough, Luis I. Escano, Minglei Qu, Christopher C. Smith, Robert G. Landers, Douglas A. Bristow, Lianyi Chen, Edward C. Kinzel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper demonstrates the potential of in-situ Optical Emission Spectroscopy (OES) to monitor the Selective Laser Melting (SLM) process. A spectrometer is split into the beam path of a home-built SLM system to collect visible light emitted from the melt pool and plume. The inline configuration allows signal collection regardless of the laser scan location. The spectral data can be used to calculate the temperature of the vapor plume and correlated with the melt-pool size. The effects of varying the atmosphere and pressure on the OES signal are also explored. These results demonstrate that OES can provide useful feedback to …


Use Of Swir Imaging To Monitor Layer-To-Layer Part Quality During Slm Of 304l Stainless Steel, Cody S. Lough, Xin Wang, Christopher C. Smith, Olaseni Adeniji, Robert G. Landers, Douglas A. Bristow, Edward C. Kinzel Aug 2018

Use Of Swir Imaging To Monitor Layer-To-Layer Part Quality During Slm Of 304l Stainless Steel, Cody S. Lough, Xin Wang, Christopher C. Smith, Olaseni Adeniji, Robert G. Landers, Douglas A. Bristow, Edward C. Kinzel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper evaluates using in-situ SWIR imaging to monitor part quality and identify potential defect locations introduced during Selective Laser Melting (SLM) of 304L stainless steel. The microstructure (porosity, grain size, and phase field) and engineering properties (density, modulus, and yield strength) depend on the thermal history during SLM manufacturing. Tensile test specimens have been built with a Renishaw AM250 using varied processing conditions to generate different thermal histories. SWIR imaging data is processed layer-to-layer to extract features in the thermal history for each process condition. The features in the thermal history are correlated with resulting part engineering properties, microstructure, …


Development Of Pre-Repair Machining Strategies For Laser-Aided Metallic Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Leon Hill, Wei Li, Frank W. Liou Aug 2018

Development Of Pre-Repair Machining Strategies For Laser-Aided Metallic Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Leon Hill, Wei Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Remanufacturing worn metallic components can prolong the service life of parts that need frequent replacement but are extremely costly to manufacture, such as aircraft titanium components, casting dies. Additive manufacturing (AM) technology enables the repair of such valuable components by depositing filler materials at the worn area layer by layer to regenerate the missing geometry. In general, damaged parts would be inspected and pre-machined prior to material deposition to remove oil, residue, oxidized layers or defects located in inaccessible regions. Therefore, the motivation of this paper is to introduce pre-repair machining strategies for removing contaminated materials from damaged components and …


Additive Manufacturing Of Liners For Shaped Charges, Jason Ho, Cody Lough, Phillip R. Mulligan, Edward C. Kinzel, Catherine E. Johnson Aug 2018

Additive Manufacturing Of Liners For Shaped Charges, Jason Ho, Cody Lough, Phillip R. Mulligan, Edward C. Kinzel, Catherine E. Johnson

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

A Shaped Charge (SC) is an explosive device used to focus a detonation in a desired direction, and has applications in oil extraction, weaponry and demolition. The focusing relies on a void in the explosive mass, shaped by a metal liner that becomes a super-heated projectile during detonation. Additive Manufacturing (AM) allows greater design freedom and geometric complexity for the liner portion of the SC. Specifically, hierarchical structuring and functional grading can potentially provide greater velocity, directionality, and efficiency. In this work, Selective Laser Melting (SLM) is used to explore different geometries for an SC liner made out of SS …


Effects Of Thermal Camera Resolution On Feature Extraction In Selective Laser Melting, Xin Wang, Cody S. Lough, Douglas A. Bristow, Edward C. Kinzel, Robert G. Landers Aug 2018

Effects Of Thermal Camera Resolution On Feature Extraction In Selective Laser Melting, Xin Wang, Cody S. Lough, Douglas A. Bristow, Edward C. Kinzel, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective Laser Melting (SLM) is a common additive manufacturing process which uses a laser energy source to fuse metal powder layer by layer. Engineering properties and microstructure are related to the part’s thermal history. It is important to measure the thermal history in-situ to qualify parts and provide the sensing which is necessary for process control. A common measurement tool for this purpose is a thermal camera that records the thermal emission of the part’s surface.

This study investigates the effects of spatial sampling resolution of thermal cameras when monitoring the temperature in SLM processes. High-fidelity simulation of an SLM …


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties. …


Modeling Of Cloud-Based Digital Twins For Smart Manufacturing With Mt Connect, Liwen Hu, Ngoc-Tu Nguyen, Wenjin Tao, Ming-Chuan Leu, Xiaoqing Frank Liu, Rakib Shahriar, S M Nahian Al Sunny Jun 2018

Modeling Of Cloud-Based Digital Twins For Smart Manufacturing With Mt Connect, Liwen Hu, Ngoc-Tu Nguyen, Wenjin Tao, Ming-Chuan Leu, Xiaoqing Frank Liu, Rakib Shahriar, S M Nahian Al Sunny

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The common modeling of digital twins uses an information model to describe the physical machines. The integration of digital twins into productive cyber-physical cloud manufacturing (CPCM) systems imposes strong demands such as reducing overhead and saving resources. In this paper, we develop and investigate a new method for building cloud-based digital twins (CBDT), which can be adapted to the CPCM platform. Our method helps reduce computing resources in the information processing center for efficient interactions between human users and physical machines. We introduce a knowledge resource center (KRC) built on a cloud server for information intensive applications. An information model …


Foil-Based Additive Manufacturing System And Method, Hai-Lung Tsai, Yiyu Shen, Yingqi Li, Chen Chen May 2018

Foil-Based Additive Manufacturing System And Method, Hai-Lung Tsai, Yiyu Shen, Yingqi Li, Chen Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An additive manufacturing system, method of manufacturing, and fabricated part. The system uses a material joining laser system to join together foil sheets to form a metal part. The material joining laser system can be configured to join adjacent foil sheets together in a substantially uniform manner. The manufacturing system also includes a material removal system that removes material from selected locations of the foil sheets to shape the foil sheets to correspond with selective slices of the part. The material removal system can be a laser system, such as a laser system configured to remove material from a foil …


Investigation Of The Information Provided By Light Touch For Balance Improvement In Humans, Anirudh Saini Jan 2018

Investigation Of The Information Provided By Light Touch For Balance Improvement In Humans, Anirudh Saini

Masters Theses

"This study investigates the information provided by Light Touch (LT) in improving human postural stability without mechanical assistance. Light Touch, an interaction force with a magnitude about 1 N, is known to improve postural stability in humans during quiet standing. However, the nature of the information from LT that helped improve balance is yet unknown. In this work, we hypothesized that LT provides information about one's body kinematics. We used a haptic robot to provide modulated, measurable light interaction force on the high back haptic location of humans to provide body kinematics-dependent information through LT. Standing balance experiments were performed …


Laser-Aided Additive Manufacturing Of Glass, John Michael Hostetler Jan 2018

Laser-Aided Additive Manufacturing Of Glass, John Michael Hostetler

Masters Theses

“This thesis presents various approaches for the laser-aided additive manufacturing of glass. First, a technique is investigated to create free-form, low to zero coefficient of thermal expansion structures out of silica-gel. A CO2 laser was coupled through a gantry system and focused onto a binder-free silica-gel powder bed (15-40 μm particles). Prior to writing each layer, powder is dispensed by sifting it onto the build platform as opposed to a conventional wiper system, avoiding contacting and potentially damaging sensitive parts. After deposition, the parts are annealed in a furnace to increase their strength. The influence of various process parameters …


Enhancement Of Performance Of Micro Direct Ethanol Fuel Cells By Structural Modification, Sindhuja Valluri Jan 2018

Enhancement Of Performance Of Micro Direct Ethanol Fuel Cells By Structural Modification, Sindhuja Valluri

Masters Theses

“Direct Ethanol Fuel Cells (DEFC’s) are becoming more important in current energy conversion devices because of their higher efficiency compared to other fuel cells. However, the performance of current DEFC’s is not efficient in providing energy to meet increasing energy demand. The objective of this work is to make the cell compact and at the same time improve performance. For this purpose, we have removed gasket and endplates to make structure compact and increased surface area by developing a new corrugated structure. This work also uses 3D printing technology Fused Deposition Modeling (FDM) to make pocket backing case to improve …


Advanced Process To Embed Optical Fiber Sensors Into Casting Mold For Smart Manufacturing, Raghavender Reddy Jakka Jan 2018

Advanced Process To Embed Optical Fiber Sensors Into Casting Mold For Smart Manufacturing, Raghavender Reddy Jakka

Masters Theses

"Optical fiber sensors embedded in metals with distributed sensing can sense temperature at multiple points with single fiber. This is useful for smart manufacturing like structural health monitoring in aerospace industry and smart molds in manufacturing plants. There is a huge difference in thermal coefficient of expansion for fiber and metal. This is the reason for the increase in sensitivity for embedded fiber sensors. However, at high temperatures, the stress on the fiber increases, eventually damaging the sensor. The fiber-metal interface determines the sensor performance. A tight interface results in high sensitivity and a gap in the interface enhances sensing …