Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jul 2007

Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. …


Neural Modeling And Control Of A Distillation Column, James Edward Steck, K. Krishnamurthy, Bruce M. Mcmillin, Gary G. Leininger Jul 1992

Neural Modeling And Control Of A Distillation Column, James Edward Steck, K. Krishnamurthy, Bruce M. Mcmillin, Gary G. Leininger

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Control of a nine-stage three-component distillation column is considered. The control objective is achieved using a neural estimator and a neural controller. The neural estimator is trained to represent the chemical process accurately, and the neural controller is trained to give an input to the chemical process which will yield the desired output. Training of both the neural networks is accomplished using a recursive least squares training algorithm implemented on an Intel iPSC/2 multicomputer (hypercube). Simulated results are presented for a numerical example.


Parallel Implementation Of A Recursive Least Squares Neural Network Training Method On The Intel Ipsc/2, James Edward Steck, Bruce M. Mcmillin, K. Krishnamurthy, M. Reza Ashouri, Gary G. Leininger Jun 1990

Parallel Implementation Of A Recursive Least Squares Neural Network Training Method On The Intel Ipsc/2, James Edward Steck, Bruce M. Mcmillin, K. Krishnamurthy, M. Reza Ashouri, Gary G. Leininger

Computer Science Faculty Research & Creative Works

An algorithm based on the Marquardt-Levenberg least-square optimization method has been shown by S. Kollias and D. Anastassiou (IEEE Trans. on Circuits Syst. vol.36, no.8, p.1092-101, Aug. 1989) to be a much more efficient training method than gradient descent, when applied to some small feedforward neural networks. Yet, for many applications, the increase in computational complexity of the method outweighs any gain in learning rate obtained over current training methods. However, the least-squares method can be more efficiently implemented on parallel architectures than standard methods. This is demonstrated by comparing computation times and learning rates for the least-squares method implemented …