Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 91 - 120 of 123

Full-Text Articles in Mechanical Engineering

Publisher Correction: Evaporation Of A Sessile Droplet On A Slope., Mitch Timm, Esmaeil Dehdashti, Amir Jarrahi Darban, Hassan Masoud Feb 2020

Publisher Correction: Evaporation Of A Sessile Droplet On A Slope., Mitch Timm, Esmaeil Dehdashti, Amir Jarrahi Darban, Hassan Masoud

Michigan Tech Publications

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Characterizing Meteorological Forecast Impact On Microgrid Optimization Performance And Design, Robert Jane, Gordon G. Parker, Gail Vaucher, Morris Berman Jan 2020

Characterizing Meteorological Forecast Impact On Microgrid Optimization Performance And Design, Robert Jane, Gordon G. Parker, Gail Vaucher, Morris Berman

Michigan Tech Publications

A microgrid consists of electrical generation sources, energy storage assets, loads, and the ability to function independently, or connect and share power with other electrical grids. Thefocus of this work is on the behavior of a microgrid, with both diesel generator and photovoltaic resources, whose heating or cooling loads are influenced by local meteorological conditions. Themicrogrid's fuel consumption and energy storage requirement were then examined as a function of the atmospheric conditions used by its energy management strategy (EMS). A fuel-optimal EMS, able to exploit meteorological forecasts, was developed and evaluated using a hybrid microgrid simulation. Weather forecast update periods …


Tra-1-60-Positive/Cd45low Cells Found In The Peripheral Blood Of Prostate Cancer Patients With Metastatic Disease – A Proof-Of-Concept Study, Claudia Schäfer, Yawen Ju, Youngbin Tak, Cesar Vazquez, Sangyoon J. Han, Edwin Tan, Et Al. Jan 2020

Tra-1-60-Positive/Cd45low Cells Found In The Peripheral Blood Of Prostate Cancer Patients With Metastatic Disease – A Proof-Of-Concept Study, Claudia Schäfer, Yawen Ju, Youngbin Tak, Cesar Vazquez, Sangyoon J. Han, Edwin Tan, Et Al.

Michigan Tech Publications

Purpose

Over 90% of all cancer related deaths are due to metastasis. However, current diagnostic tools can't reliably discriminate between invasive and localized cancers.

Patients and methods

In this proof-of-concept study, we employed the embryonic stem cell marker TRA-1-60 (TRA+) to identify TRA + cells within the blood of prostate cancer patients and searched for TRA + cells in men with metastatic and localized cancers. We isolated whole peripheral blood mononuclear cells from 26 metastatic prostate cancer patients, from 13 patients with localized prostate cancer and from 17 healthy controls. Cells were stained for DAPI, CD45 and TRA + by …


Primal-Dual 2-Approximation Algorithm For The Monotonic Multiple Depot Heterogeneous Traveling Salesman Problem, S. Rathinam, R. Ravi, J. Bae, K. Sundar Jan 2020

Primal-Dual 2-Approximation Algorithm For The Monotonic Multiple Depot Heterogeneous Traveling Salesman Problem, S. Rathinam, R. Ravi, J. Bae, K. Sundar

Michigan Tech Publications

We study a Multiple Depot Heterogeneous Traveling Salesman Problem (MDHTSP) where the cost of the traveling between any two targets depends on the type of the vehicle. The travel costs are assumed to be symmetric, satisfy the triangle inequality, and are monotonic, i.e., the travel costs between any two targets monotonically increases with the index of the vehicles. Exploiting the monotonic structure of the travel costs, we present a 2-approximation algorithm based on the primal-dual method.


Agile Stage-Gate Management (Asgm) For Physical Products, John J. Salvato, Andre O. Laplume Jan 2020

Agile Stage-Gate Management (Asgm) For Physical Products, John J. Salvato, Andre O. Laplume

Michigan Tech Publications

We present a qualitative study of Agile Stage-Gate Management (ASGM),: a hybrid new product development methodology that combines Agile and Stage-Gate Management (SGM) approaches for the coordination of new product development. When applied to software projects, Agile is expected to deliver reduced development times, improved resource utilization, and greater financial success. We examine whether ASGM practitioners realize similar outcomes in a sample of global firms developing complex electro-mechanical products (e.g., automobile components, railway propulsion systems, and medical devices). Our grounded theory approach articulates an understanding of ASGM through extensive interviews of experienced professionals. Our thematic analysis supports many expected benefits …


Droop Control In Dq Coordinates For Fixed Frequency Inverter-Based Ac Microgrids, Mohamed Toub, Mehrzad Mohammadi Bijaieh, Wayne Weaver, Rush D. Robinett Iii, Mohamed Maaroufi, Ghassane Aniba Oct 2019

Droop Control In Dq Coordinates For Fixed Frequency Inverter-Based Ac Microgrids, Mohamed Toub, Mehrzad Mohammadi Bijaieh, Wayne Weaver, Rush D. Robinett Iii, Mohamed Maaroufi, Ghassane Aniba

Michigan Tech Publications

This paper presents a proof-of-concept for a novel dq droop control technique that applies DC droop control methods to fixed frequency inverter-based AC microgrids using the dq0 transformation. Microgrids are usually composed of distributed generation units (DGUs) that are electronically coupled to each other through power converters. An inherent property of inverter-based microgrids is that, unlike microgrids with spinning machines, the frequency of the parallel-connected DGUs is a global variable independent from the output power since the inverters can control the output waveform frequency with a high level of precision. Therefore, conventional droop control methods that distort the system frequency …


Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce Oct 2019

Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce

Michigan Tech Publications

In order to accelerate deployment of distributed recycling by providing low-cost feed stocks of granulated post-consumer waste plastic, this study analyzes an open source waste plastic granulator system. It is designed, built, and tested for its ability to convert post-consumer waste, 3D printed products and waste into polymer feedstock for recyclebots of fused particle/granule printers. The technical specifications of the device are quantified in terms of power consumption (380 to 404 W for PET and PLA, respectively) and particle size distribution. The open source device can be fabricated for less than $2000 USD in materials. The experimentally measured power use …


Design Of Hydroxyapatite/Magnetite (Hap/Fe3o4) Based Composites Reinforced With Zno And Mgo For Biomedical Applications, D. Katundi, E. Bayraktar, F. Gatamorta, I. Miskioglu Oct 2019

Design Of Hydroxyapatite/Magnetite (Hap/Fe3o4) Based Composites Reinforced With Zno And Mgo For Biomedical Applications, D. Katundi, E. Bayraktar, F. Gatamorta, I. Miskioglu

Michigan Tech Publications

Hydroxyapatite (HAP-- Ca 10(PO4 )6 (OH)2 ) is a biocompatible and bioactive material that is widely used for biomedical applications, especially in bone replacements. It has good load carrying capacity; however, it lacks antibacterial property. New bio-composites based on bovine hydroxyapatite doped with, magnetite iron oxide (HAP/ Fe3 O4 ) matrix reinforced with ZnO and MgO nanoparticles are proposed for biomedical applications that provide improved antibacterial activity with potential to be used in magnetic therapy. Microwave sintering was used to manufacture the composites. The microstructure evolution in these composites were studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy …


Optimal And Decentralized Control Strategies For Inverter-Based Ac Microgrids, Michael D. Cook, Eddy H. Trinklein, Gordon Parker, Rush D. Robinett Iii, Wayne Weaver Sep 2019

Optimal And Decentralized Control Strategies For Inverter-Based Ac Microgrids, Michael D. Cook, Eddy H. Trinklein, Gordon Parker, Rush D. Robinett Iii, Wayne Weaver

Michigan Tech Publications

This paper presents two control strategies: (i) An optimal exergy destruction (OXD) controller and (ii) a decentralized power apportionment (DPA) controller. The OXD controller is an analytical, closed-loop optimal feedforward controller developed utilizing exergy analysis to minimize exergy destruction in an AC inverter microgrid. The OXD controller requires a star or fully connected topology, whereas the DPA operates with no communication among the inverters. The DPA presents a viable alternative to conventional P−ω/Q−V droop control, and does not suffer from fluctuations in bus frequency or steady-state voltage while taking advantage of distributed storage assets necessary for the high penetration of …


Docking Control Of An Autonomous Underwater Vehicle Using Reinforcement Learning, Enrico Anderlini, Gordon Parker, Giles Thomas Aug 2019

Docking Control Of An Autonomous Underwater Vehicle Using Reinforcement Learning, Enrico Anderlini, Gordon Parker, Giles Thomas

Michigan Tech Publications

To achieve persistent systems in the future, autonomous underwater vehicles (AUVs) will need to autonomously dock onto a charging station. Here, reinforcement learning strategies were applied for the first time to control the docking of an AUV onto a fixed platform in a simulation environment. Two reinforcement learning schemes were investigated: one with continuous state and action spaces, deep deterministic policy gradient (DDPG), and one with continuous state but discrete action spaces, deep Q network (DQN). For DQN, the discrete actions were selected as step changes in the control input signals. The performance of the reinforcement learning strategies was compared …


Stability Analysis On Nonequilibrium Supersonic Boundary Layer Flow With Velocity-Slip Boundary Conditions, Xin He, Chunpei Cai Jul 2019

Stability Analysis On Nonequilibrium Supersonic Boundary Layer Flow With Velocity-Slip Boundary Conditions, Xin He, Chunpei Cai

Michigan Tech Publications

This paper presents our recent work on investigating velocity slip boundary conditions’ effects on supersonic flat plate boundary layer flow stability. The velocity-slip boundary conditions are adopted and the flow properties are obtained by solving boundary layer equations. Stability analysis of two such boundary layer flows is performed by using the Linear stability theory. A global method is first utilized to obtain approximate discrete mode values. A local method is then utilized to refine these mode values. All the modes in these two scenarios have been tracked upstream-wisely towards the leading edge and also downstream-wisely. The mode values for the …


Mapping Modeled Exposure Of Wildland Fire Smoke For Human Health Studies In California, Patricia Koman, Michael Billmire, Kirk Baker, Ricardo De Majo, Frank Anderson, Sumi Hoshiko, Brian Thelen, Nancy H. F. French Jun 2019

Mapping Modeled Exposure Of Wildland Fire Smoke For Human Health Studies In California, Patricia Koman, Michael Billmire, Kirk Baker, Ricardo De Majo, Frank Anderson, Sumi Hoshiko, Brian Thelen, Nancy H. F. French

Michigan Tech Publications

Wildland fire smoke exposure affects a broad proportion of the U.S. population and is increasing due to climate change, settlement patterns and fire seclusion. Significant public health questions surrounding its effects remain, including the impact on cardiovascular disease and maternal health. Using atmospheric chemical transport modeling, we examined general air quality with and without wildland fire smoke PM2.5. The 24-h average concentration of PM2.5 from all sources in 12-km gridded output from all sources in California (2007–2013) was 4.91 μg/m3. The average concentration of fire-PM2.5 in California by year was 1.22 μg/m3 (~25% …


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved …


Open Source Completely 3-D Printable Centrifuge, Salil S. Sule, Aliaksei Petsiuk, Joshua M. Pearce May 2019

Open Source Completely 3-D Printable Centrifuge, Salil S. Sule, Aliaksei Petsiuk, Joshua M. Pearce

Michigan Tech Publications

Centrifuges are commonly required devices in medical diagnostics facilities as well as scientific laboratories. Although there are commercial and open source centrifuges, the costs of the former and the required electricity to operate the latter limit accessibility in resource-constrained settings. There is a need for low-cost, human-powered, verified, and reliable lab-scale centrifuges. This study provides the designs for a low-cost 100% 3-D printed centrifuge, which can be fabricated on any low-cost RepRap-class (self-replicating rapid prototyper) fused filament fabrication (FFF)- or fused particle fabrication (FPF)-based 3-D printer. In addition, validation procedures are provided using a web camera and free and open …


Capillary Penetration Method For Measuring Wetting Properties Of Carbon Ionomer Films For Proton Exchange Membrane Fuel Cell (Pemfc) Applications, Sofyane Abbou, Kazuya Tajiri, K. T. Alofari, Ezequiel F. Medici, A. T. Haug, Jeffrey S. Allen Apr 2019

Capillary Penetration Method For Measuring Wetting Properties Of Carbon Ionomer Films For Proton Exchange Membrane Fuel Cell (Pemfc) Applications, Sofyane Abbou, Kazuya Tajiri, K. T. Alofari, Ezequiel F. Medici, A. T. Haug, Jeffrey S. Allen

Michigan Tech Publications

In this work, capillary rise experiments were performed to assess the wetting properties of carbon-ionomer (CI) films. The samples were attached to a micro-balance and then immersed into liquid water to (i) measure the mass gain from the liquid uptake and (ii) estimate the (external) contact angle to water (typical value around 140°). The results showed that drying the CI films under low vacuum significantly impacted the CI film wettability. The influence of the ionomer content on the CI films’ wettability was investigated with various ionomer to carbon (I/C) ratios: 0.8, 1.0, 1.2 and 1.4. No significant variation of the …


Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker Oct 2018

Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker

Michigan Tech Publications

Reliability is a key consideration when microgrid technology is implemented in military applications. Droop control provides a simple option without requiring communication between microgrid components, increasing the control system reliability. However, traditional droop control does not allow the microgrid to utilize much of the power available from a solar resource. This paper applies an optimal multidimensional droop control strategy for a solar resource connected in a microgrid at a military patrol base. Simulation and hardware-in-the-loop experiments of a sample microgrid show that much more power from the solar resource can be utilized, while maintaining the system’s bus voltage around a …


Properties Of Torrefied U.S. Waste Blends, Zhou Xu, Stas Zinchik, Shreyas Kolapkar, Ezra Bar Ziv, Ted Hansen, Dennis Conn, Armando G. Mcdonald Jul 2018

Properties Of Torrefied U.S. Waste Blends, Zhou Xu, Stas Zinchik, Shreyas Kolapkar, Ezra Bar Ziv, Ted Hansen, Dennis Conn, Armando G. Mcdonald

Michigan Tech Publications

Power generation facilities in the U.S. are looking for a potential renewable fuel that is sustainable, low-cost, complies with environmental regulation standards and is a drop-in fuel in the existing infrastructure. Although torrefied woody biomass, meets most of these requirements, its high cost, due to the use of woody biomass, prevented its commercialization. Industrial waste blends, which are also mostly renewable, are suitable feedstock for torrefaction, and can be an economically viable solution, thus may prolong the life of some of the existing coal power plants in the U.S. This paper focuses on the torrefaction dynamics of paper fiber-plastic waste …


Control Of Wave Energy Converters With Discrete Displacement Hydraulic Power Take-Off Units, Shangyan Zou, Ossama Abdelkhalik Apr 2018

Control Of Wave Energy Converters With Discrete Displacement Hydraulic Power Take-Off Units, Shangyan Zou, Ossama Abdelkhalik

Michigan Tech Publications

The control of ocean Wave Energy Converters (WECs) impacts the harvested energy. Several control methods have been developed over the past few decades to maximize the harvested energy. Many of these methods were developed based on an unconstrained dynamic model assuming an ideal power take-off (PTO) unit. This study presents numerical tests and comparisons of a few recently developed control methods. The testing is conducted using a numerical simulator that simulates a hydraulic PTO. The PTO imposes constraints on the maximum attainable control force and maximum stroke. In addition, the PTO has its own dynamics, which may impact the performance …


The Role Of Electron Irradiation History In Liquid Cell Transmission Electron Microscopy., Trevor H Moser, Hardeep Mehta, Chiwoo Park, Ryan T Kelly, Tolou Shokuhfar, James E Evans Apr 2018

The Role Of Electron Irradiation History In Liquid Cell Transmission Electron Microscopy., Trevor H Moser, Hardeep Mehta, Chiwoo Park, Ryan T Kelly, Tolou Shokuhfar, James E Evans

Michigan Tech Publications

In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of …


Effective Turning Motion Control Of Internally Actuated Autonomous Underwater Vehicles, Saeedeh Ziaeefard, Brian R. Page, Anthony Pinar, Nina Mahmoudian Jan 2018

Effective Turning Motion Control Of Internally Actuated Autonomous Underwater Vehicles, Saeedeh Ziaeefard, Brian R. Page, Anthony Pinar, Nina Mahmoudian

Michigan Tech Publications

This paper presents a novel roll mechanism and an efficient control strategy for internally actuated autonomous underwater vehicles (AUVs). The developed control algorithms are tested on Michigan Tech’s custom research glider, ROUGHIE (Research Oriented Underwater Glider for Hands-on Investigative Engineering), in a controlled environment. The ROUGHIE’s design parameters and operational constraints were driven by its requirement to be man portable, expandable, and maneuverable in shallow water. As an underwater glider, the ROUGHIE is underactuated with direct control of only depth, pitch, and roll. A switching control method is implemented on the ROUGHIE to improve its maneuverability, enabling smooth transitions between …


Rarefication Effects On Jet Impingement Loads, Shiying Cai, Chunpei Cai, Kai Zhang, Jun Li Sep 2017

Rarefication Effects On Jet Impingement Loads, Shiying Cai, Chunpei Cai, Kai Zhang, Jun Li

Michigan Tech Publications

Rarefication effects on jet impingement loads are studied by comparing recent new formulas at the collisionless flow limit and numerical simulations. The jet exit size is finite, and can be either planar or round. In the simulations, the jets have different degrees of rarefication, with a Knudsen (Kn) number ranging from 0 to infinity; i.e., the jet flows can be continuum, collisional, or collisionless. The comparison results indicate that (1) the new surface load formulas are accurate at the collisionless flow limit; (2) in general, the formulas offer upper limits for the peak loads; (3) however, it is improper to …


An Improved Electron Pre-Sheath Model For Tss-1r Current Enhancement Computations, Chunpei Cai Mar 2017

An Improved Electron Pre-Sheath Model For Tss-1r Current Enhancement Computations, Chunpei Cai

Michigan Tech Publications

This report presents improvements of investigations on the Tethered Satellite System (TSS)-1R electron current enhancement due to magnetic limited collections. New analytical expressions are obtained for the potential and temperature changes across the pre-sheath. The mathematical treatments in this work are more rigorous than one past approach. More experimental measurements collected in the ionosphere during the TSS-1R mission are adopted for validations. The relations developed in this work offer two bounding curves for these data points quite successfully; the average of these two curves is close to the curve-fitting results for the measurements; and an average of 2.95 times larger …


The Influence Of Bmss On The Characterization And Modeling Of Series And Parallel Li-Ion Packs, Sandra Castano-Solis, Daniel Serrano-Jimenez, Lucia Gauchia, Javier Sanz Feb 2017

The Influence Of Bmss On The Characterization And Modeling Of Series And Parallel Li-Ion Packs, Sandra Castano-Solis, Daniel Serrano-Jimenez, Lucia Gauchia, Javier Sanz

Michigan Tech Publications

This work analyzes the effects of a BMS (battery management system) on the characterization and modeling of series and parallel connections of Li-ion cell packs. The Li-ion pack studied consists of four series modules connected in parallel. This pack has been characterized by means of charge, discharge and frequency tests. As a result of these tests, series and parallel influence on battery parameters have been determined. A model considering the effects of a BMS is established and compared with a model based on a single-cell approach. Experimental validations show that the single cell based approach gives poor results in comparison …


A New Gaskinetic Model To Analyze Background Flow Effects On Weak Gaseous Jet Flows From Electric Propulsion Devices, Chunpei Cai Jan 2017

A New Gaskinetic Model To Analyze Background Flow Effects On Weak Gaseous Jet Flows From Electric Propulsion Devices, Chunpei Cai

Michigan Tech Publications

Recent work on studying rarefied background and jet flow interactions is reported. A new gaskinetic method is developed to investigate two closely related problems. The first problem is how a collisionless background flow can affect a highly rarefied jet flow. The rarefied jet and background flow conditions are assumed available and described with seven parameters. Gaskinetic theories are applied and formulas are obtained for the mixture properties. Simulations are performed to validate these expressions, and excellent agreement is obtained. The second problem is to recover the collisionless background and jet flow parameters with limited measurements. A group of linearized equations …


Gaskinetic Modeling On Dilute Gaseous Plume Impingement Flows, Chunpei Cai Dec 2016

Gaskinetic Modeling On Dilute Gaseous Plume Impingement Flows, Chunpei Cai

Michigan Tech Publications

This paper briefly reviews recent work on gaseous plume impingement flows. As the major part of this paper, also included are new comprehensive studies on high-speed, collisionless, gaseous, circular jet impinging on a three-dimensional, inclined, diffuse or specular flat plate. Gaskinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include impingement surface properties such as pressure, shear stress, and heat flux. From these surface properties, averaged coefficients of pressure, friction, heat flux, moment over the entire flat plate, and the distance from the moment center to the flat …


Energy Optimization And Fuel Economy Investigation Of A Series Hybrid Electric Vehicle Integrated With Diesel/Rcci Engines, Ali Solouk, Mahdi Shahbakhti Dec 2016

Energy Optimization And Fuel Economy Investigation Of A Series Hybrid Electric Vehicle Integrated With Diesel/Rcci Engines, Ali Solouk, Mahdi Shahbakhti

Michigan Tech Publications

Among different types of low temperature combustion (LTC) regimes, eactively controlled compression ignition (RCCI) has received a lot of attention as a promising advanced combustion engine technology with high indicated thermal efficiency and low nitrogen oxides ( NOx" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">NOx ) and particulate matter (PM) emissions. In this study, an RCCI engine for the purpose of fuel economy investigation is incorporated in series hybrid electric vehicle (SHEV) architecture, …


Mitigation Of The Impact Of High Plug-In Electric Vehicle Penetration On Residential Distribution Grid Using Smart Charging Strategies, Chong Cao, Luting Wang, Bo Chen Dec 2016

Mitigation Of The Impact Of High Plug-In Electric Vehicle Penetration On Residential Distribution Grid Using Smart Charging Strategies, Chong Cao, Luting Wang, Bo Chen

Michigan Tech Publications

Vehicle electrification presents a great opportunity to reduce transportation greenhouse gas emissions. The greater use of plug-in electric vehicles (PEVs), however, puts stress on local distribution networks. This paper presents an optimal PEV charging control method integrated with utility demand response (DR) signals to mitigate the impact of PEV charging to several aspects of a grid, including load surge, distribution accumulative voltage deviation, and transformer aging. To build a realistic PEV charging load model, the results of National Household Travel Survey (NHTS) have been analyzed and a stochastic PEV charging model has been defined based on survey results. The residential …


Two-Temperature Dual-Phase-Lags Theory In A Thermoelastic Solid Half-Space Due To An Inclined Load, Ashraf M. Zenkour, Ahmed E. Abouelregal, Khaled A. Alnefaie, Nidal H. Abu-Hamdeh, Abdulmalik A. Aljinaidi, Elias C. Aifantis Aug 2016

Two-Temperature Dual-Phase-Lags Theory In A Thermoelastic Solid Half-Space Due To An Inclined Load, Ashraf M. Zenkour, Ahmed E. Abouelregal, Khaled A. Alnefaie, Nidal H. Abu-Hamdeh, Abdulmalik A. Aljinaidi, Elias C. Aifantis

Michigan Tech Publications

This article addresses the thermoelastic interaction due to inclined load on a homogeneous isotropic half-space in context of two-temperature generalized theory of thermoelasticity with dual-phase-lags. It is assumed that the inclined load is a linear combination of both normal and tangential loads. The governing equations are solved by using the normal mode analysis. The variations of the displacement, stress, conductive temperature, and thermodynamic temperature distributions with the horizontal distance have been shown graphically. Results of some earlier workers have also been deduced from the present investigation as special cases. Some comparisons are graphically presented to estimate the effects of the …


Exergy Study On The Effect Of Material Parameters And Operating Conditions On The Anode Diffusion Polarization Of The Sofc, Khalid Zouhri, Seong Young Lee Jun 2016

Exergy Study On The Effect Of Material Parameters And Operating Conditions On The Anode Diffusion Polarization Of The Sofc, Khalid Zouhri, Seong Young Lee

Michigan Tech Publications

In the presented work, a model is created in order to investigate the effect of different material parameters and operating conditions on the anode diffusion overpotential, which influence the exergy and energy efficiency of the solid oxide fuel cell (SOFC). In this research, it was demonstrated that the anode material parameters and operating conditions of the device components such as porosity, tortuosity, pore diameter, temperature, pressure and current density of the anode have various effects on the anode diffusion overpotential, which consequently affect the exergy and energy efficiency of the SOFC. The model has provided a strong direction on how …


Review Of Sensing Methodologies For Estimation Of Combustion Metrics, Libin Jia, Jeffrey D. Naber, Jason R. Blough Jan 2016

Review Of Sensing Methodologies For Estimation Of Combustion Metrics, Libin Jia, Jeffrey D. Naber, Jason R. Blough

Michigan Tech Publications

For reduction of engine-out emissions and improvement of fuel economy, closed-loop control of the combustion process has been explored and documented by many researchers. In the closed-loop control, the engine control parameters are optimized according to the estimated instantaneous combustion metrics provided by the combustion sensing process. Combustion sensing process is primarily composed of two aspects: combustion response signal acquisition and response signal processing. As a number of different signals have been employed as the response signal and the signal processing techniques can be different, this paper did a review work concerning the two aspects: combustion response signals and signal …