Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Numerical Study On Oscillating Flow Over A Flat Plate Using Pseudo-Compressibility In Intermittent Turbulent Regime, Shivank Srivastava Mr. May 2021

Numerical Study On Oscillating Flow Over A Flat Plate Using Pseudo-Compressibility In Intermittent Turbulent Regime, Shivank Srivastava Mr.

University of New Orleans Theses and Dissertations

A Computational Fluid Dynamic (CFD) in-house code is developed to study unsteady characteristics of incompressible oscillating boundary layer flow over a flat plate under laminar and intermittently turbulent condition using pseudo-compressible unsteady Reynolds Averaged Navier- Stokes (RANS) model. In the in-house code, the two-dimensional, unsteady conservation of mass and momentum equations are discretized using finite difference techniques which employs second order accurate (based on Taylor series) central differencing for spatial derivatives and second order Runge-Kutta accurate differencing for temporal derivatives. The in-house code employs Fully Explicit-Finite Difference technique (FEFD) to solve the governing differential equations of the mathematical model. In …


Computational Fluid Dynamics Applied To The Analysis Of Blood Flow Through Central Aortic To Pulmonary Artery Shunts, Carey Celestin Jr May 2015

Computational Fluid Dynamics Applied To The Analysis Of Blood Flow Through Central Aortic To Pulmonary Artery Shunts, Carey Celestin Jr

University of New Orleans Theses and Dissertations

This research utilizes CFD to analyze blood flow through pathways representative of central shunts, commonly used as part of the Fontan procedure to treat cyanotic heart disease. In the first part of this research, a parametric study of steady, Newtonian blood flow through parabolic pathways was performed to demonstrate the effect that flow pathway curvature has on wall shear stress distribution and flow energy losses. In the second part, blood flow through two shunts obtained via biplane angiograms is simulated. Pressure boundary conditions were obtained via catheterization. Results showed that wall shear stresses were of sufficient magnitude to initiate platelet …