Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2022

Machine learning

Discipline
Institution
Publication
Publication Type

Articles 1 - 20 of 20

Full-Text Articles in Mechanical Engineering

Development Of Alternative Air Filtration Materials And Methods Of Analysis, Ivan Philip Beckman Dec 2022

Development Of Alternative Air Filtration Materials And Methods Of Analysis, Ivan Philip Beckman

Theses and Dissertations

Clean air is a global health concern. Each year more than seven million people across the globe perish from breathing poor quality air. Development of high efficiency particulate air (HEPA) filters demonstrate an effort to mitigate dangerous aerosol hazards at the point of production. The nuclear power industry installs HEPA filters as a final line of containment of hazardous particles. Advancement air filtration technology is paramount to achieving global clean air. An exploration of analytical, experimental, computational, and machine learning models is presented in this dissertation to advance the science of air filtration technology. This dissertation studies, develops, and analyzes …


Pressure Drop And Heat Transfer In Flow Over An Array Of Blocks Of Varying Heights: A Statistical And Ai Analysis On The Effect Of Block Height Variation, Ali Navidi Nov 2022

Pressure Drop And Heat Transfer In Flow Over An Array Of Blocks Of Varying Heights: A Statistical And Ai Analysis On The Effect Of Block Height Variation, Ali Navidi

Electronic Thesis and Dissertation Repository

The presence of a stiff obstruction in the path of fluid causes the creation of a boundary layer over and around the obstruction. The flow over an idealized, two-dimensional series of blocks is numerically investigated to determine how statistical blocks height variation, such as standard deviation, mean, and skewness, influence pressure drop and heat flux. These data sets serve as a foundation for developing models for estimating the heat transfer coefficient of each block using machine learning (ML) methods. The results show that the pressure drop increased by 60% when the standard deviation of heights of blocks increased from 0.1 …


A Framework For Stable Robot-Environment Interaction Based On The Generalized Scattering Transformation, Kanstantsin Pachkouski Nov 2022

A Framework For Stable Robot-Environment Interaction Based On The Generalized Scattering Transformation, Kanstantsin Pachkouski

Electronic Thesis and Dissertation Repository

This thesis deals with development and experimental evaluation of control algorithms for stabilization of robot-environment interaction based on the conic systems formalism and scattering transformation techniques. A framework for stable robot-environment interaction is presented and evaluated on a real physical system. The proposed algorithm fundamentally generalizes the conventional passivity-based approaches to the coupled stability problem. In particular, it allows for stabilization of not necessarily passive robot-environment interaction. The framework is based on the recently developed non-planar conic systems formalism and generalized scattering-based stabilization methods. A comprehensive theoretical background on the scattering transformation techniques, planar and non-planar conic systems is presented. …


Predictability Of Mechanical Behavior Of Additively Manufactured Particulate Composites Using Machine Learning And Data-Driven Approaches, Steven Malley, Crystal Reina, Somer Nacy, Jérôme Gilles, Behrad Koohbor Nov 2022

Predictability Of Mechanical Behavior Of Additively Manufactured Particulate Composites Using Machine Learning And Data-Driven Approaches, Steven Malley, Crystal Reina, Somer Nacy, Jérôme Gilles, Behrad Koohbor

Henry M. Rowan College of Engineering Faculty Scholarship

Additive manufacturing and data analytics are independently flourishing research areas, where the latter can be leveraged to gain a great insight into the former. In this paper, the mechanical responses of additively manufactured samples using vat polymerization process with different weight ratios of magnetic microparticles were used to develop, train, and validate a neural network model. Samples with six different compositions, ranging from neat photopolymer to a composite of photopolymer with 4 wt.% of magnetic particles, were manufactured and mechanically tested at quasi-static strain rate and ambient environmental conditions. The experimental data were also synthesized using a data-driven approach based …


Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu Oct 2022

Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In this study, a finite element (FE)-based machine learning model was developed to predict the mechanical properties of bioglass (BG)-collagen (COL) composite hydrogels. Based on the experimental observation of BG-COL composite hydrogels with scanning electron microscope, 2000 microstructural images with randomly distributed BG particles were created. The BG particles have diameters ranging from 0.5 μm to 1.5 μm and a volume fraction from 17% to 59%. FE simulations of tensile testing were performed for calculating the Young’s modulus and Poisson’s ratio of 2000 microstructures. The microstructural images and the calculated Young’s modulus and Poisson’s ratio by FE simulation were used …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo Oct 2022

Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Variation in the local thermal history during the Laser Powder Bed Fusion (LPBF) process in Additive Manufacturing (AM) can cause micropore defects, which add to the uncertainty of the mechanical properties (e.g., fatigue life, tensile strength) of the built materials. In-situ sensing has been proposed for monitoring the AM process to minimize defects, but successful minimization requires establishing a quantitative relationship between the sensing data and the porosity, which is particularly challenging with a large number of variables (e.g., laser speed, power, scan path, powder property). Physics-based modeling can simulate such an in-situ sensing-porosity relationship, but it is computationally costly. …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman Aug 2022

Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman

Graduate Theses and Dissertations

Research on design thinking and design decision-making is vital for discovering and utilizing beneficial design patterns, strategies, and heuristics of human designers in solving engineering design problems. It is also essential for the development of new algorithms embedded with human intelligence and can facilitate human-computer interactions. However, modeling design thinking is challenging because it takes place in the designer’s mind, which is intricate, implicit, and tacit. For an in-depth understanding of design thinking, fine-grained design behavioral data are important because they are the critical link in studying the relationship between design thinking, design decisions, design actions, and design performance. Therefore, …


Optimization Of Lattice Structure Using Machine Learning Approach, Tanzila Bint Minhaj Aug 2022

Optimization Of Lattice Structure Using Machine Learning Approach, Tanzila Bint Minhaj

Open Access Theses & Dissertations

The goal line of designing any structure is to get maximum performance at minimum cost. Therefore, optimization is the only method to achieve that objective. Engineers have been practicing different formats of optimization. Topological optimization is one of the well-known long-practiced methods. But it is always desired to find the most helpful design method that considers every relevant parameter associated with the structure. In the continuation of this search to enhance the efficacy of design through optimization, a new approach was explored in the following work. The motivation was to enable a model to be capable of finding out the …


Predicting The Remaining Service Life Of Railroad Bearings: Leveraging Machine Learning And Onboard Sensor Data, Leonel Villafranca Jul 2022

Predicting The Remaining Service Life Of Railroad Bearings: Leveraging Machine Learning And Onboard Sensor Data, Leonel Villafranca

Theses and Dissertations

By continuously monitoring train bearing health in terms of temperature and vibration levels of bearings tested in a laboratory setting, statistical regression models have been developed to establish relationships between the sensor-acquired bearing health data with several explanatory factors that potentially influence the bearing deterioration. Despite their merits, statistical models fall short of reliable prediction accuracy levels since they entail restrictive assumptions, such as a priori known functional relationship between the response and input variables. A data-driven machine learning algorithm is presented, which can unravel the nonlinear deterioration model purely based on the bearing health data, even when the structure …


Triboinformatic Approaches For Surface Characterization: Tribological And Wetting Properties, Md Syam Hasan May 2022

Triboinformatic Approaches For Surface Characterization: Tribological And Wetting Properties, Md Syam Hasan

Theses and Dissertations

Tribology is the study of surface roughness, adhesion, friction, wear, and lubrication of interacting solid surfaces in relative motion. In addition, wetting properties are very important for surface characterization. The combination of Tribology with Machine Learning (ML) and other data-centric methods is often called Triboinformatics. In this dissertation, triboinformatic methods are applied to the study of Aluminum (Al) composites, antimicrobial, and water-repellent metallic surfaces, and organic coatings.Al and its alloys are often preferred materials for aerospace and automotive applications due to their lightweight, high strength, corrosion resistance, and other desired material properties. However, Al exhibits high friction and wear rates …


Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci May 2022

Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci

Mechanical & Aerospace Engineering Theses & Dissertations

Current analysis of manufacturing defects in the production of rims and tires via x-ray inspection at an industry partner’s manufacturing plant requires that a quality control specialist visually inspect radiographic images for defects of varying sizes. For each sample, twelve radiographs are taken within 35 seconds. Some defects are very small in size and difficult to see (e.g., pinholes) whereas others are large and easily identifiable. Implementing this quality control practice across all products in its human-effort driven state is not feasible given the time constraint present for analysis.

This study aims to identify and develop an object detector capable …


Nucleate Boiling Under Different Gravity Values: Numerical Simulations & Data-Driven Techniques., Sandipan Banerjee May 2022

Nucleate Boiling Under Different Gravity Values: Numerical Simulations & Data-Driven Techniques., Sandipan Banerjee

Electronic Theses and Dissertations

Nucleate boiling is important in nuclear applications and cooling applications under earth gravity conditions. Under reduced gravity or microgravity environment, it is significant too, especially in space exploration applications. Although multiple studies have been performed on nucleate boiling, the effect of gravity on nucleate boiling is not well understood. This dissertation primarily deals with numerical simulations of nucleate boiling using an adaptive Moment-of-Fluid (MoF) method for a single vapor bubble (water vapor or Perfluoro-n-hexane) in saturated liquid for different gravity levels. Results concerning the growth rate of the bubble, specifically the departure diameter and departure time have been provided. The …


Machine Learning Based Aerodynamic Shape Optimization, Noe Martinez Jr. May 2022

Machine Learning Based Aerodynamic Shape Optimization, Noe Martinez Jr.

Theses and Dissertations

The coefficient of pressure distribution for various 2D airfoil geometries were found using source – vortex panel methods. The data obtained in these simulations was used in multiple machine learning models which would predict the airfoil geometry from a given coefficient of pressure distribution. The neural networks employed were fully connected feedforward networks with Levenberg – Marquardt backpropagation and one model employed Bayesian Regularization. A novel tool for optimizing airfoil shape for a given coefficient of pressure distribution was created which performed well during testing. These models serve as the first step in minimizing the conflict between aerodynamic and stealth …


Ultra-Broadband And Polarization-Insensitive Metasurface Absorber With Behavior Prediction Using Machine Learning, Shobhit K. Patel, Juveriya Parmar, Vijay Katkar, Fahad Ahmed Al-Zahrani, Kawsar Ahmed Mar 2022

Ultra-Broadband And Polarization-Insensitive Metasurface Absorber With Behavior Prediction Using Machine Learning, Shobhit K. Patel, Juveriya Parmar, Vijay Katkar, Fahad Ahmed Al-Zahrani, Kawsar Ahmed

Department of Mechanical and Materials Engineering: Faculty Publications

The solar spectrum energy absorption is very important for designing any solar absorber. The need for absorbing visible, infrared, and ultraviolet regions is increasing as most of the absorbers absorb visible regions. We propose a metasurface solar absorber based on Ge2Sb2Te5 (GST) substrate which increases the absorption in visible, infrared and ultraviolet regions. GST is a phase-changing material having two different phases amorphous (aGST) and crystalline (cGST). The absorber is also analyzed using machine learning algorithm to predict the absorption values for different wavelengths. The solar absorber is showing an ultra-broadband response covering a 0.2–1.5 …


Development Of Machine Learning Algorithm To Identify High-Emitters From On-Road Data For Heavy-Duty (Hd) Vehicles, Filiz Kazan Jan 2022

Development Of Machine Learning Algorithm To Identify High-Emitters From On-Road Data For Heavy-Duty (Hd) Vehicles, Filiz Kazan

Graduate Theses, Dissertations, and Problem Reports

The process of on-road, heavy-duty engine family certification is regulated by the United States Environmental Protection Agency (US EPA). Currently, the US EPA 2010 emissions standards require the threshold from the Federal Testing Procedure (FTP) engine dynamometer cycle to be at or below a brake-specific NOx (bs-NOx) value of 0.20 g/bhp-hr for heavy-duty (HD) engines. The engine manufacturers are also required to conduct in-use portable emission measurement system (PEMS) testing to prove their products' compliance. The selected vehicles are required to satisfy not-to-exceed (NTE) analysis under normal driving conditions in the heavy-duty in-use testing (HDIUT) program. California …


A Convolutional Neural Network (Cnn) For Defect Detection Of Additively Manufactured Parts, Musarrat Farzana Rahman Jan 2022

A Convolutional Neural Network (Cnn) For Defect Detection Of Additively Manufactured Parts, Musarrat Farzana Rahman

Masters Theses

“Additive manufacturing (AM) is a layer-by-layer deposition process to fabricate parts with complex geometries. The formation of defects within AM components is a major concern for critical structural and cyclic loading applications. Understanding the mechanisms of defect formation and identifying the defects play an important role in improving the product lifecycle. The convolutional neural network (CNN) has been demonstrated to be an effective deep learning tool for automated detection of defects for both conventional and AM processes. A network with optimized parameters including proper data processing and sampling can improve the performance of the architecture. In this study, for the …


Design Of Composite Joints Using Machine Learning Approaches, Natalie Richards Jan 2022

Design Of Composite Joints Using Machine Learning Approaches, Natalie Richards

Williams Honors College, Honors Research Projects

Adhesively bonded joints have an advantage in joining dissimilar engineering materials due to their high structural efficiency and being lightweight. These joints are either between two opposite laminates or between a composite laminate and a metal structure. The aerospace and automotive industries have seen an increase in utilizing these adhesive joints in their engineering applications. Joint strength along with the failure mode (adhesive, delamination, etc.) is the most important parameter to evaluate when understanding the capability of the adhesive joint. In this paper, a regression and a classification machine learning (ML) model are utilized to predict the failure load and …