Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Machine learning

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 68

Full-Text Articles in Mechanical Engineering

Data-Driven And Cell-Specific Determination Of Nuclei-Associated Actin Structure, Nina Nikitina, Nurbanu Bursa, Matthew Goelzer, Madison Goldfeldt, Chase Crandall, Sean Howard, Janet Rubin, Anamaria Zavala, Aykut Satici, Gunes Uzer May 2024

Data-Driven And Cell-Specific Determination Of Nuclei-Associated Actin Structure, Nina Nikitina, Nurbanu Bursa, Matthew Goelzer, Madison Goldfeldt, Chase Crandall, Sean Howard, Janet Rubin, Anamaria Zavala, Aykut Satici, Gunes Uzer

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Quantitative volumetric assessment of filamentous actin (F-actin) fibers remains challenging due to their interconnected nature, leading researchers to utilize threshold-based or qualitative measurement methods with poor reproducibility. Herein, a novel machine learning-based methodology is introduced for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a convolutional neural network (CNN), actin filaments and nuclei from 3D confocal microscopy images are segmented and then each fiber is reconstructed by connecting intersecting contours on cross-sectional slices. This allows measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin …


Quantitative Assessment And Characterization Of Tool Wear Phenomena In Advanced Manufacturing Processes, Oybek Valijonovich Tuyboyov Apr 2024

Quantitative Assessment And Characterization Of Tool Wear Phenomena In Advanced Manufacturing Processes, Oybek Valijonovich Tuyboyov

Technical science and innovation

This paper explores the quantitative assessment and characterization of tool wear phenomena in advanced manufacturing processes, employing a multifaceted approach encompassing traditional measurements, image processing, machine learning, and predictive modeling. The study emphasizes the intricate dynamics of tool wear and its direct impact on cutting tool performance, addressing challenges in real-time monitoring and optimization of machining operations. Traditional methods like VBmax measurement are juxtaposed with advanced techniques such as the improved conditional generative adversarial net with a high-quality optimization algorithm (CGAN-HQOA), efficient channel attention destruction and construction learning (ECADCL), and shape descriptors based on contour, moments, orientations, and texture. Artificial …


Experimental, Computational, And Machine Learning Methods For Prediction Of Residual Stresses In Laser Additive Manufacturing: A Critical Review, Sung Heng Wu, Usman Tariq, Ranjit Joy, Todd Sparks, Aaron Flood, Frank W. Liou Apr 2024

Experimental, Computational, And Machine Learning Methods For Prediction Of Residual Stresses In Laser Additive Manufacturing: A Critical Review, Sung Heng Wu, Usman Tariq, Ranjit Joy, Todd Sparks, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In recent decades, laser additive manufacturing has seen rapid development and has been applied to various fields, including the aerospace, automotive, and biomedical industries. However, the residual stresses that form during the manufacturing process can lead to defects in the printed parts, such as distortion and cracking. Therefore, accurately predicting residual stresses is crucial for preventing part failure and ensuring product quality. This critical review covers the fundamental aspects and formation mechanisms of residual stresses. It also extensively discusses the prediction of residual stresses utilizing experimental, computational, and machine learning methods. Finally, the review addresses the challenges and future directions …


Optimal Tilt-Wing Evtol Takeoff Trajectory Prediction Using Regression Generative Adversarial Networks, Shuan Tai Yeh, Xiaosong Du Jan 2024

Optimal Tilt-Wing Evtol Takeoff Trajectory Prediction Using Regression Generative Adversarial Networks, Shuan Tai Yeh, Xiaosong Du

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Electric vertical takeoff and landing (eVTOL) aircraft have attracted tremendous attention nowadays due to their flexible maneuverability, precise control, cost efficiency, and low noise. The optimal takeoff trajectory design is a key component of cost-effective and passenger-friendly eVTOL systems. However, conventional design optimization is typically computationally prohibitive due to the adoption of high-fidelity simulation models in an iterative manner. Machine learning (ML) allows rapid decision making; however, new ML surrogate modeling architectures and strategies are still desired to address large-scale problems. Therefore, we showcase a novel regression generative adversarial network (regGAN) surrogate for fast interactive optimal takeoff trajectory predictions of …


Deep Reinforcement Learning For The Design Of Structural Topologies, Nathan Brown Dec 2023

Deep Reinforcement Learning For The Design Of Structural Topologies, Nathan Brown

All Dissertations

Advances in machine learning algorithms and increased computational efficiencies have given engineers new capabilities and tools for engineering design. The presented work investigates using deep reinforcement learning (DRL), a subset of deep machine learning that teaches an agent to complete a task through accumulating experiences in an interactive environment, to design 2D structural topologies. Three unique structural topology design problems are investigated to validate DRL as a practical design automation tool to produce high-performing designs in structural topology domains.

The first design problem attempts to find a gradient-free alternative to solving the compliance minimization topology optimization problem. In the proposed …


Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon Dec 2023

Damage Detection With An Integrated Smart Composite Using A Magnetostriction-Based Nondestructive Evaluation Method: Integrating Machine Learning For Prediction, Christopher Nelon

All Dissertations

The development of composite materials for structural components necessitates methods for evaluating and characterizing their damage states after encountering loading conditions. Laminates fabricated from carbon fiber reinforced polymers (CFRPs) are lightweight alternatives to metallic plates; thus, their usage has increased in performance industries such as aerospace and automotive. Additive manufacturing (AM) has experienced a similar growth as composite material inclusion because of its advantages over traditional manufacturing methods. Fabrication with composite laminates and additive manufacturing, specifically fused filament fabrication (fused deposition modeling), requires material to be placed layer-by-layer. If adjacent plies/layers lose adhesion during fabrication or operational usage, the strength …


Human-Centric Smart Cities: A Digital Twin-Oriented Design Of Interactive Autonomous Vehicles, Oscar G. De Leon-Vazquez Dec 2023

Human-Centric Smart Cities: A Digital Twin-Oriented Design Of Interactive Autonomous Vehicles, Oscar G. De Leon-Vazquez

Theses and Dissertations

Autonomous vehicle (AV) technology is introduced as a solution to improve transportation safety by eliminating traffic accidents caused by human error, which is the leading cause of 90% of accidents. One key feature of AVs is sensing and perceiving their surrounding environment through processing observations collected from the environment. The perception system is essential for an AV to make informed decisions and safely navigate the environment. This study presents an image semantic segmentation algorithm developed in the area of computer vision to improve AV perception. The U-Net-based algorithm is trained and validated using a synthetically generated dataset in a simulation …


Ai-Based Bridge And Road Inspection Framework Using Drones, Hovannes Kulhandjian Nov 2023

Ai-Based Bridge And Road Inspection Framework Using Drones, Hovannes Kulhandjian

Mineta Transportation Institute

There are over 590,000 bridges dispersed across the roadway network that stretches across the United States alone. Each bridge with a length of 20 feet or greater must be inspected at least once every 24 months, according to the Federal Highway Act (FHWA) of 1968. This research developed an artificial intelligence (AI)-based framework for bridge and road inspection using drones with multiple sensors collecting capabilities. It is not sufficient to conduct inspections of bridges and roads using cameras alone, so the research team utilized an infrared (IR) camera along with a high-resolution optical camera. In many instances, the IR camera …


Wearable Sensor-Based Walkability Assessment At Ferry Terminal Using Machine Learning: A Case Study Of Mokpo, Korea, Jungyeon Choi, Hwayoung Kim Oct 2023

Wearable Sensor-Based Walkability Assessment At Ferry Terminal Using Machine Learning: A Case Study Of Mokpo, Korea, Jungyeon Choi, Hwayoung Kim

Journal of Marine Science and Technology

Walkability assessments are becoming more popular, as walking offers numerous health, environmental, and economic benefits to communities. However, previous studies on ferry terminal walkability assessment have been inadequate. This study aimed to develop a wearable sensor system to automatically assess walkability at ferry terminals without conducting surveys. We applied seven machine learning (ML) classifiers to detect different walking environments, including flat ground (FG), downhill slope (DS), uphill slope (US), and uneven surface (UE). The ML models were evaluated across different combinations of classes: 2-class (FG vs. UE), 3-class (U) (FG vs. US vs. UE), 3-class (D) (FG vs. DS vs. …


Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland Oct 2023

Machine Learning Approach To Activity Categorization In Young Adults Using Biomechanical Metrics, Nathan Q. C. Holland

Mechanical & Aerospace Engineering Theses & Dissertations

Inactive adults often have decreased musculoskeletal health and increased risk factors for chronic diseases. However, there is limited data linking biomechanical measurements of generally healthy young adults to their physical activity levels assessed through questionnaires. Commonly used data collection methods in biomechanics for assessing musculoskeletal health include but are not limited to muscle quality (measured as echo intensity when using ultrasound), isokinetic (i.e., dynamic) muscle strength, muscle activations, and functional movement assessments using motion capture systems. These assessments can be time consuming for both data collection and processing. Therefore, understanding if all biomechanical assessments are necessary to classify the activity …


Image Segmentation With Human-In-The-Loop In Automated De-Caking Process For Powder Bed Additive Manufacturing, Vincent Opare Addo Asare-Manu Jul 2023

Image Segmentation With Human-In-The-Loop In Automated De-Caking Process For Powder Bed Additive Manufacturing, Vincent Opare Addo Asare-Manu

Theses and Dissertations

Additive manufacturing (AM) becomes a critical technology that increases the speed and flexibility of production and reduces the lead time for high-mix, low-volume manufacturing. One of the major bottlenecks in further increasing its productivity lies around its post-processing procedures. This work focuses on tackling a critical and inevitable step in powder-bed additive manufacturing processes, i.e., powder cleaning or de-caking. Pressing concerns can be raised with human involvement when performing this task manually. Therefore, a robot-driven automatic powder cleaning system could be an alternative to reducing time consumption and increasing safety for AM operators. However, since the color and surface texture …


Development Of A Modular Agricultural Robotic Sprayer, Paolo Rommel P. Sanchez May 2023

Development Of A Modular Agricultural Robotic Sprayer, Paolo Rommel P. Sanchez

Theses and Dissertations

Precision Agriculture (PA) increases farm productivity, reduces pollution, and minimizes input costs. However, the wide adoption of existing PA technologies for complex field operations, such as spraying, is slow due to high acquisition costs, low adaptability, and slow operating speed. In this study, we designed, built, optimized, and tested a Modular Agrochemical Precision Sprayer (MAPS), a robotic sprayer with an intelligent machine vision system (MVS). Our work focused on identifying and spraying on the targeted plants with low cost, high speed, and high accuracy in a remote, dynamic, and rugged environment. We first researched and benchmarked combinations of one-stage convolutional …


Mesoscale Modeling And Machine Learning Studies Of Grain Boundary Segregation In Metallic Alloys, Malek Alkayyali May 2023

Mesoscale Modeling And Machine Learning Studies Of Grain Boundary Segregation In Metallic Alloys, Malek Alkayyali

All Dissertations

Nearly all structural and functional materials are polycrystalline alloys; they are composed of differently oriented crystalline grains that are joined at internal interfaces termed grain boundaries (GBs). It is well accepted that GB dynamics play a critical role in many phenomena during materials processing or under operating environments. Of particular interest are GB migration and grain growth processes, as they influence many crystal-size dependent properties, such as mechanical strength and electrical conductivity.

In metallic alloys, GBs offer a plethora of preferential atomic sites for alloying elements to occupy. Indeed, recent experimental studies employing in-situ microscopy revealed strong GB solute segregation …


An Artificial Intelligence Approach To Fatigue Crack Length Estimation From Acoustic Emission Signals, Shane T. Ennis Apr 2023

An Artificial Intelligence Approach To Fatigue Crack Length Estimation From Acoustic Emission Signals, Shane T. Ennis

Theses and Dissertations

As in service aircraft begin to age and fatigue, a method for evaluating the operational life they are currently operating under and have remaining comes into question. Structural health monitoring is (SHM) is a popular method of structural analysis with growing interest in the aerospace industry. SHM is capable of damage assessment and structural life estimations.

The ultimate goal of the research presented in this thesis is to develop a methodology of classifying the length of a fatigue crack though the use of machine learning. The thesis has three major chapters as described below.

The first chapter deals with the …


Advanced Ensemble Modeling Method For Space Object State Prediction Accounting For Uncertainty In Atmospheric Density, Smriti Nandan Paul, Richard J. Licata, Piyush M. Mehta Mar 2023

Advanced Ensemble Modeling Method For Space Object State Prediction Accounting For Uncertainty In Atmospheric Density, Smriti Nandan Paul, Richard J. Licata, Piyush M. Mehta

Mechanical and Aerospace Engineering Faculty Research & Creative Works

For objects in the low Earth orbit region, uncertainty in atmospheric density estimation is an important source of orbit prediction error, which is critical for space traffic management activities such as the satellite conjunction analysis. This paper investigates the evolution of orbit error distribution in the presence of atmospheric density uncertainties, which are modeled using probabilistic machine learning techniques. The recently proposed "HASDM-ML," "CHAMP-ML," and "MSIS-UQ" machine learning models for density estimation (Licata and Mehta, 2022b; Licata et al., 2022b) are used in this work. The investigation is convoluted because of the spatial and temporal correlation of the atmospheric density …


Comparing The Performance Of Different Machine Learning Models In The Evaluation Of Solder Joint Fatigue Life Under Thermal Cycling, Jason Scott Ross Jan 2023

Comparing The Performance Of Different Machine Learning Models In The Evaluation Of Solder Joint Fatigue Life Under Thermal Cycling, Jason Scott Ross

Dissertations and Theses

Predicting the reliability of board-level solder joints is a challenging process for the designer because the fatigue life of solder is influenced by a large variety of design parameters and many nonlinear, coupled phenomena. Machine learning has shown promise as a way of predicting the fatigue life of board-level solder joints. In the present work, the performance of various machine learning models to predict the fatigue life of board-level solder joints is discussed. Experimental data from many different solder joint thermal fatigue tests are used to train the different machine learning models. A web-based database for storing, sharing, and uploading …


Development Of Alternative Air Filtration Materials And Methods Of Analysis, Ivan Philip Beckman Dec 2022

Development Of Alternative Air Filtration Materials And Methods Of Analysis, Ivan Philip Beckman

Theses and Dissertations

Clean air is a global health concern. Each year more than seven million people across the globe perish from breathing poor quality air. Development of high efficiency particulate air (HEPA) filters demonstrate an effort to mitigate dangerous aerosol hazards at the point of production. The nuclear power industry installs HEPA filters as a final line of containment of hazardous particles. Advancement air filtration technology is paramount to achieving global clean air. An exploration of analytical, experimental, computational, and machine learning models is presented in this dissertation to advance the science of air filtration technology. This dissertation studies, develops, and analyzes …


Pressure Drop And Heat Transfer In Flow Over An Array Of Blocks Of Varying Heights: A Statistical And Ai Analysis On The Effect Of Block Height Variation, Ali Navidi Nov 2022

Pressure Drop And Heat Transfer In Flow Over An Array Of Blocks Of Varying Heights: A Statistical And Ai Analysis On The Effect Of Block Height Variation, Ali Navidi

Electronic Thesis and Dissertation Repository

The presence of a stiff obstruction in the path of fluid causes the creation of a boundary layer over and around the obstruction. The flow over an idealized, two-dimensional series of blocks is numerically investigated to determine how statistical blocks height variation, such as standard deviation, mean, and skewness, influence pressure drop and heat flux. These data sets serve as a foundation for developing models for estimating the heat transfer coefficient of each block using machine learning (ML) methods. The results show that the pressure drop increased by 60% when the standard deviation of heights of blocks increased from 0.1 …


A Framework For Stable Robot-Environment Interaction Based On The Generalized Scattering Transformation, Kanstantsin Pachkouski Nov 2022

A Framework For Stable Robot-Environment Interaction Based On The Generalized Scattering Transformation, Kanstantsin Pachkouski

Electronic Thesis and Dissertation Repository

This thesis deals with development and experimental evaluation of control algorithms for stabilization of robot-environment interaction based on the conic systems formalism and scattering transformation techniques. A framework for stable robot-environment interaction is presented and evaluated on a real physical system. The proposed algorithm fundamentally generalizes the conventional passivity-based approaches to the coupled stability problem. In particular, it allows for stabilization of not necessarily passive robot-environment interaction. The framework is based on the recently developed non-planar conic systems formalism and generalized scattering-based stabilization methods. A comprehensive theoretical background on the scattering transformation techniques, planar and non-planar conic systems is presented. …


Predictability Of Mechanical Behavior Of Additively Manufactured Particulate Composites Using Machine Learning And Data-Driven Approaches, Steven Malley, Crystal Reina, Somer Nacy, Jérôme Gilles, Behrad Koohbor Nov 2022

Predictability Of Mechanical Behavior Of Additively Manufactured Particulate Composites Using Machine Learning And Data-Driven Approaches, Steven Malley, Crystal Reina, Somer Nacy, Jérôme Gilles, Behrad Koohbor

Henry M. Rowan College of Engineering Faculty Scholarship

Additive manufacturing and data analytics are independently flourishing research areas, where the latter can be leveraged to gain a great insight into the former. In this paper, the mechanical responses of additively manufactured samples using vat polymerization process with different weight ratios of magnetic microparticles were used to develop, train, and validate a neural network model. Samples with six different compositions, ranging from neat photopolymer to a composite of photopolymer with 4 wt.% of magnetic particles, were manufactured and mechanically tested at quasi-static strain rate and ambient environmental conditions. The experimental data were also synthesized using a data-driven approach based …


Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu Oct 2022

Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In this study, a finite element (FE)-based machine learning model was developed to predict the mechanical properties of bioglass (BG)-collagen (COL) composite hydrogels. Based on the experimental observation of BG-COL composite hydrogels with scanning electron microscope, 2000 microstructural images with randomly distributed BG particles were created. The BG particles have diameters ranging from 0.5 μm to 1.5 μm and a volume fraction from 17% to 59%. FE simulations of tensile testing were performed for calculating the Young’s modulus and Poisson’s ratio of 2000 microstructures. The microstructural images and the calculated Young’s modulus and Poisson’s ratio by FE simulation were used …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo Oct 2022

Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Variation in the local thermal history during the Laser Powder Bed Fusion (LPBF) process in Additive Manufacturing (AM) can cause micropore defects, which add to the uncertainty of the mechanical properties (e.g., fatigue life, tensile strength) of the built materials. In-situ sensing has been proposed for monitoring the AM process to minimize defects, but successful minimization requires establishing a quantitative relationship between the sensing data and the porosity, which is particularly challenging with a large number of variables (e.g., laser speed, power, scan path, powder property). Physics-based modeling can simulate such an in-situ sensing-porosity relationship, but it is computationally costly. …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman Aug 2022

Data-Driven Research On Engineering Design Thinking And Behaviors In Computer-Aided Systems Design: Analysis, Modeling, And Prediction, Molla Hafizur Rahman

Graduate Theses and Dissertations

Research on design thinking and design decision-making is vital for discovering and utilizing beneficial design patterns, strategies, and heuristics of human designers in solving engineering design problems. It is also essential for the development of new algorithms embedded with human intelligence and can facilitate human-computer interactions. However, modeling design thinking is challenging because it takes place in the designer’s mind, which is intricate, implicit, and tacit. For an in-depth understanding of design thinking, fine-grained design behavioral data are important because they are the critical link in studying the relationship between design thinking, design decisions, design actions, and design performance. Therefore, …


Optimization Of Lattice Structure Using Machine Learning Approach, Tanzila Bint Minhaj Aug 2022

Optimization Of Lattice Structure Using Machine Learning Approach, Tanzila Bint Minhaj

Open Access Theses & Dissertations

The goal line of designing any structure is to get maximum performance at minimum cost. Therefore, optimization is the only method to achieve that objective. Engineers have been practicing different formats of optimization. Topological optimization is one of the well-known long-practiced methods. But it is always desired to find the most helpful design method that considers every relevant parameter associated with the structure. In the continuation of this search to enhance the efficacy of design through optimization, a new approach was explored in the following work. The motivation was to enable a model to be capable of finding out the …


Predicting The Remaining Service Life Of Railroad Bearings: Leveraging Machine Learning And Onboard Sensor Data, Leonel Villafranca Jul 2022

Predicting The Remaining Service Life Of Railroad Bearings: Leveraging Machine Learning And Onboard Sensor Data, Leonel Villafranca

Theses and Dissertations

By continuously monitoring train bearing health in terms of temperature and vibration levels of bearings tested in a laboratory setting, statistical regression models have been developed to establish relationships between the sensor-acquired bearing health data with several explanatory factors that potentially influence the bearing deterioration. Despite their merits, statistical models fall short of reliable prediction accuracy levels since they entail restrictive assumptions, such as a priori known functional relationship between the response and input variables. A data-driven machine learning algorithm is presented, which can unravel the nonlinear deterioration model purely based on the bearing health data, even when the structure …


Triboinformatic Approaches For Surface Characterization: Tribological And Wetting Properties, Md Syam Hasan May 2022

Triboinformatic Approaches For Surface Characterization: Tribological And Wetting Properties, Md Syam Hasan

Theses and Dissertations

Tribology is the study of surface roughness, adhesion, friction, wear, and lubrication of interacting solid surfaces in relative motion. In addition, wetting properties are very important for surface characterization. The combination of Tribology with Machine Learning (ML) and other data-centric methods is often called Triboinformatics. In this dissertation, triboinformatic methods are applied to the study of Aluminum (Al) composites, antimicrobial, and water-repellent metallic surfaces, and organic coatings.Al and its alloys are often preferred materials for aerospace and automotive applications due to their lightweight, high strength, corrosion resistance, and other desired material properties. However, Al exhibits high friction and wear rates …


Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci May 2022

Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci

Mechanical & Aerospace Engineering Theses & Dissertations

Current analysis of manufacturing defects in the production of rims and tires via x-ray inspection at an industry partner’s manufacturing plant requires that a quality control specialist visually inspect radiographic images for defects of varying sizes. For each sample, twelve radiographs are taken within 35 seconds. Some defects are very small in size and difficult to see (e.g., pinholes) whereas others are large and easily identifiable. Implementing this quality control practice across all products in its human-effort driven state is not feasible given the time constraint present for analysis.

This study aims to identify and develop an object detector capable …