Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar Dec 2017

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar

Electronic Theses and Dissertations

Powder injection molding (PIM) process simulations can be performed to minimize the number of injection molding experiments by estimating material properties necessary for PIM simulations. In current work, lead zirconate titanate (PZT) powder-polymer binder feedstock was compounded for 45 vol. % and 52 vol. % solids loading. PIM experiments on designed micro-pillar array geometry were performed using 52 vol. % PZT. Using PIM experiments results as basis, PIM simulations were performed on designed micro-pillar array geometries to understand the effectiveness of PIM simulations with the use of estimated feedstock properties in predicting molding behavior that have micro-features. Additionally, PIM simulations …


Design, Analysis, And Application Of A Cellular Material/Structure Model For Metal Based Additive Manufacturing Process., Shanshan Zhang Dec 2017

Design, Analysis, And Application Of A Cellular Material/Structure Model For Metal Based Additive Manufacturing Process., Shanshan Zhang

Electronic Theses and Dissertations

Powder bed fusion additive manufacturing (PBF-AM) has been broadly utilized to fabricate lightweight cellular structures, which have promising potentials in many engineering applications such as biomedical prosthesis, aerospace, and architectural structures due to their high performance-to-weight ratios and unique property tailorabilities. To date, there is still a lack of adequate understanding of how the cellular materials are influenced by both the geometry designs and process parameters, which significantly hinders the effective design of cellular structures fabricated by PBF-AM for critical applications. This study aims to demonstrate a cellular structure design methodology that integrates geometrical design and process-material property designs. Utilizing …


Fused Filament Fabrication 3d Printing Using Low-Melting Alloys., Nirupama Warrier Dec 2017

Fused Filament Fabrication 3d Printing Using Low-Melting Alloys., Nirupama Warrier

Electronic Theses and Dissertations

Fused Filament Fabrication (FFF) 3D printing technology has been a popular method of creating prototypes using plastics in the timeliest and most affordable manner for electronic, automotive, and biomedical applications. 3D printing of metals and alloys using FFF technology could provide low-cost alternatives and solutions to the Laser-Powder Bed Fusion Process (L-PBF) and Binder Jetting processes (BJ). In current work, low melting alloys have been used as a starting material and evaluated for FFF 3D printing using two methodologies. In the first methodology, Sn60Bi40 alloy in the form of wire was used as the feedstock for FFF extrusion and process …


Piezoelectric Bistable Buckled Beam Energy Harvester., Brian Edward Allgeier Aug 2017

Piezoelectric Bistable Buckled Beam Energy Harvester., Brian Edward Allgeier

Electronic Theses and Dissertations

A novel energy harvesting device design is presented to be created via microfabrication techniques. Such devices have countless applications for powering low-current electrical devices, especially wireless sensors or transmitters. This micro-electromechanical system (MEMS) design utilizes the piezoelectric response of a bistable buckled beam to gather electrical energy via ambient vibrations. While many traditional piezoelectric energy harvesters (PEH) consist of simple cantilever beam geometries, this nonlinear design utilizes inertial effects of torsional lever arms to actuate a central buckled beam to snap between its two stable states; such an abrupt strain on the piezoelectric beam potentially produces a significantly increased electrical …


Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne Aug 2017

Biomechanical Testing Of An Exercise For Strengthening The Proximal Femur., Alyssa Osbourne

Electronic Theses and Dissertations

Based on the principles of cutting edge bone remodeling research, a unique therapeutic exercise device was designed specifically to improve bone quality at the most critical location of the proximal femur prone to fracture: the superior-lateral femoral neck where the fracture first initiates during a fall. The exercise/device is intended to work by inducing enough strain in the bone to stimulate the body’s natural bone remodeling mechanisms to increase bone density in the proximal femur and consequently prevent a fracture from arising if a fall to the side does occur.

In order to test the proposed exercise, experiments simulating the …


Investigation Of Lattice Structures And Analysis Of Strut Geometry., Zachary D Denzik Jul 2017

Investigation Of Lattice Structures And Analysis Of Strut Geometry., Zachary D Denzik

Electronic Theses and Dissertations

This study involves the evaluation of lattice specimens fabricated using additive manufacturing as well as investigation of the influence of unit cell connection geometry. Lattice topologies of face-centered cells and body-centered cells were modeled, investigated using finite element analysis (FEA) for each specimen, manufactured using direct metal laser sintering (DMLS) with maraging steel powder, and mechanically tested. The strut diameter of each topology was altered to yield four different mass reductions from a solid cube, ranging from 55%-90% mass reduction. Three iterations of 1000mm3 lattice specimens were investigated. The first iteration consisted 0.5mm plates on the top and bottom …


Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron May 2017

Development And Evaluation Of A Biocompatible Electroactive Sensor For Continuous Blood Pressure Measurement., Scott D. Cambron

Electronic Theses and Dissertations

Piezo-active composites have been implemented for sensing and transduction for decades. The 0-3 ceramic/polymer composite is one of the most common composite types used for sensing applications, owing to their tailorable properties of the two-phase composition, consisting of a three-dimensionally connected polymer/rubber matrix (inactive phase) with a dispersion of isolated piezo-ceramic particles (active phase). This thesis describes a method to develop novel biocompatible perivascular band comprised of a two-phase piezo-active composite to be fabricated using simple manufacturing processes. Biomaterials such as tissue scaffolds comprised of silk fibroin (SF) and chitosan (CS), and biocompatible soft rubbers will be implemented as the …