Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

On The Stress Concentration At Sharp V-Notches Under Tension, Trent Mattieu Andrus Oct 2020

On The Stress Concentration At Sharp V-Notches Under Tension, Trent Mattieu Andrus

LSU Master's Theses

Accurately determining stresses at re-entrant corners using finite element analysis (FEA) is challenging due to the high stresses produced at the corner. Indeed, FEA is unable to obtain quantitatively accurate peak stresses at mathematically sharp re-entrant corners with traditional boundary conditions because these stresses are singular. Imposing a local corner radius by rounding the sharp corner to remove the singular result is an appropriate technique for large radii, but as the corner radius tends to zero and the notch is close to being sharp, we expect there are radii that yield quantitatively inaccurate results with traditional FEA. We seek to …


Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo Oct 2020

Modulating Mechanical Properties Of Polymer Composites Via Colloidal Particle Reinforcement, Yusheng Guo

LSU Master's Theses

Additive manufacturing allows the rapid process of complex objects with excellent design flexibility. However, the products often exhibit poor mechanical properties when pure polymer is applied as printable material. In this work, we demonstrate that printability of polymer can be dramatically improved when particle filler is added to form reinforced polymer composites. Furthermore, the interaction between filler and polymer matrix leads to the enhancement in mechanical properties of the printed product. The material reinforcement induced by addition of fillers enables the wide application of polymer composites to print structures with unique features. In the printing of silica-reinforced pNIPAM composite, we …


Study On The Chemical And Mechanical Stability Of Polymer Nanofluidic Biosensors, Dae Won Kim Jul 2020

Study On The Chemical And Mechanical Stability Of Polymer Nanofluidic Biosensors, Dae Won Kim

LSU Master's Theses

Polymer nanofluidic devices have great potential to replace silicon (Si) and glass-based nanofluidic devices in biomedical applications due to their advantages such as low material and fabrication cost, various physicochemical properties, well-developed surface modification protocol, and low electrical noises for electrical measurements. In nanofluidic sensing applications, single molecules such as DNA are introduced into the fabricated nanochannel or nanopore, measuring their physicochemical properties optically or electrically. The properties of materials for nanofluidic devices have a significant role in the performance of the devices, such as DNA translocation and device stability.

Among several nanoscale fluidic physics, surface charge density is a …


The Desorption Kinetics Of Methane From Nonaqueous Fluids For Enhanced Well Control, James Lee Nielsen Jr. Jan 2020

The Desorption Kinetics Of Methane From Nonaqueous Fluids For Enhanced Well Control, James Lee Nielsen Jr.

LSU Master's Theses

The mass transfer of a dissolved gas evolving to return to the gaseous phase from a liquid is governed by many parameters. This process affects the development of an oil and gas well due to the possibility of gas contamination occurring from either an influx entering the wellbore, or drilling through gas-bearing formations. Once this dissolved hydrocarbon gas circulates up the wellbore, it will begin to evolve from solution and poses a potential risk to drilling equipment, the environment, and personnel at a drilling rig. Being able to predict the behavior of gas desorption based on a known set of …