Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Faculty Publications

Microchannel

Discipline
Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John H. Harb, Jonathan C. Claussen, Brian D. Iverson Aug 2018

Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John H. Harb, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

Free-standing, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 μm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating …


Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John N. Harb, Jonathan C. Claussen, Brian D. Iverson Aug 2018

Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John N. Harb, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

Freestanding, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 μm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating …


Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Jun 2018

Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This work experimentally studies the effects of single wall heating on laminar flow in a high-aspect ratio superhydrophobic microchannel. When water that is saturated with air is used as the working liquid, the non-wetted cavities on the superhydrophobic surfaces act as nucleation sites and allow air to effervesce out of the water and onto the surface when heated. Previous works in the literature have only considered the opposite case where the water is undersaturated and absorbs air out the cavities for a microchannel setting. The microchannel considered in this work consists of a rib/cavity structured superhydrophobic surface and a glass …


High Aspect Ratio, Carbon Nanotube Membranes Decorated With Pt Nanoparticle Urchins For Micro Underwater Vehicle Propulsion Via H2O2 Decomposition, Kevin M. Marr, Bolin Chen, Eric J. Mootz, Jason Geder, Marius Pruessner, Brian J. Melde, Richard R. Vanfleet, Igor L. Medintz, Brian D. Iverson, Jonathan C. Claussen Jun 2015

High Aspect Ratio, Carbon Nanotube Membranes Decorated With Pt Nanoparticle Urchins For Micro Underwater Vehicle Propulsion Via H2O2 Decomposition, Kevin M. Marr, Bolin Chen, Eric J. Mootz, Jason Geder, Marius Pruessner, Brian J. Melde, Richard R. Vanfleet, Igor L. Medintz, Brian D. Iverson, Jonathan C. Claussen

Faculty Publications

The utility of unmanned Micro Underwater Vehicles (MUVs) is paramount for exploring confined spaces, but their spatial agility is often impaired when maneuvers require burst-propulsion. herein we develop high-aspect ratio (150:1), multi-walled carbon nanotube microarray membranes (CNT-MMs) for propulsive, MUV thrust generation by the decomposition of hydrogen peroxide (H2O2). The CNT-MMs are grown via chemical vapor deposition with diamond shaped pores (nominal diagonal dimensions of 4.5 × 9.0 [µm]) and subsequently decorated with urchin-like, platinum (Pt) nanoparticles via a facile, electroless, chemical deposition process. The Pt-CNT-MMs display robust, high catalytic ability with an effective activation energy …