Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Microchannel

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Mechanical Engineering

The Dark Annulus Of A Drop In A Hele-Shaw Cell Is Caused By The Refraction Of Light Through Its Meniscus, Sangjin Ryu, Haipeng Zhang, Carson Emeigh Jun 2022

The Dark Annulus Of A Drop In A Hele-Shaw Cell Is Caused By The Refraction Of Light Through Its Meniscus, Sangjin Ryu, Haipeng Zhang, Carson Emeigh

Department of Mechanical and Materials Engineering: Faculty Publications

Knowing the meniscus shape of confined drops is important for understanding how they make first contact and then coalesce. When imaged from the top view by brightfield microscopy, a liquid drop (e.g., corn syrup) confined in a Hele-Shaw cell, surrounded by immiscible liquid (e.g., mineral oil), had a dark annulus, and the width of the annulus decreased with increasing concentration of corn syrup. Since the difference in the annulus width was presumed to be related to the meniscus shape of the drops, three-dimensional images of the drops with different concentrations were obtained using confocal fluorescence microscopy, and their cross-sectional meniscus …


Enhanced Flow Boiling And Bubble Dynamics With Hfe7100 & Di Water In Interconnected Microchannels, Jiaxuan Ma Apr 2021

Enhanced Flow Boiling And Bubble Dynamics With Hfe7100 & Di Water In Interconnected Microchannels, Jiaxuan Ma

Theses and Dissertations

Flow boiling in microchannels using dielectric fluids is one of the most desirable cooling solutions for high power electronics. Primary two-flow patterns, including bubbly flow, slug flow, and annular flow, have been well established in microchannels. However, it is challenging to promote flow boiling performance, particularly critical heat flux (CHF), due to their unfavorable thermophysical properties. Considering these situations, flow boiling in parallel and isolated microchannels have been extensively studied. In this dissertation, a novel concept that has five parallel microchannels (W=200 µm, H=250 µm, L=10 mm) are interconnected by micro-slots (20 µm wide and 250 µm deep) starting from …


Modeling And Simulation Of A Supercritical Co2-Liquid Sodium Compact Heat Exchanger For Sodium Fast Reactors, Hailei Wang, Sean M. Kissick Aug 2020

Modeling And Simulation Of A Supercritical Co2-Liquid Sodium Compact Heat Exchanger For Sodium Fast Reactors, Hailei Wang, Sean M. Kissick

Mechanical and Aerospace Engineering Faculty Publications

The study focuses on modeling and simulations of sodium-sCO2 intermediary compact heat exchangers for sodium-cooled fast reactors (SFR). A simplified 1-D analytical model was developed in companion with a 3-D CFD model. Using classic heat transfer correlations for Nusselt number, some simulation results using the 1-D model have achieved reasonable match with the CFD simulation results for longer channels (i.e., 40 cm and 80 cm). However, for short channel (10 cm) when axial conduction within the sodium fluid is significant, the 1-D model significantly over-predicted the heat transfer effectiveness. By incorporating the temperature-jump model, the 1-D model can extend its …


Efficacy Of Eluted Antibiotics In 3d Printed Orthopaedic Implants, Mohammed Mehdi Benmassaoud Aug 2018

Efficacy Of Eluted Antibiotics In 3d Printed Orthopaedic Implants, Mohammed Mehdi Benmassaoud

Theses and Dissertations

Costs associated with musculoskeletal diseases in the United States account for 5.7 % of the Gross Domestic Product (GDP) [1]. As such, there is a need to pursue new ideas in orthopaedic implants that can decrease cost and improve patient care. In the recent years, 3D printing using Fused Deposition Modeling (FDM) or Stereolithography (SLA) has opened several exciting possibilities to create orthopaedic implants. Such implants can be engineered to release antibiotics in a controlled manner either by infusing the drug into the material during manufacturing or by using built-in design features such as micro-channels and reservoirs [2]. The use …


Experimental Validation Of A Numerical Phase Change Model For Microchannel Slug Flow Boiling, Christian J. Retter, Todd A. Kingston, Justin A. Weibel, Suresh V. Garimella Aug 2018

Experimental Validation Of A Numerical Phase Change Model For Microchannel Slug Flow Boiling, Christian J. Retter, Todd A. Kingston, Justin A. Weibel, Suresh V. Garimella

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermal management of high-power electronic devices continues to be a critical challenge. Flow boiling in microchannel heat sinks has been demonstrated to be an effective method for removing high heat fluxes from these devices owing to utilization of the latent heat of the fluid and the large surface area enhancement for heat exchange. However, microchannel flow boiling technologies have yet to be broadly implemented due to a lack of experimentally validated prediction and design tools. The goal of this study is to use high-fidelity experimental data to validate a previously developed numerical phase change model, to help enable physics-based prediction …


Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John H. Harb, Jonathan C. Claussen, Brian D. Iverson Aug 2018

Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John H. Harb, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

Free-standing, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 μm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating …


Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John N. Harb, Jonathan C. Claussen, Brian D. Iverson Aug 2018

Electrochemical Glucose Sensors Enhanced By Methyl Viologen And Vertically Aligned Carbon Nanotube Channels, Benjamin J. Brownlee, Meisam Bahari, John N. Harb, Jonathan C. Claussen, Brian D. Iverson

Faculty Publications

Freestanding, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 μm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating …


Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Jun 2018

Bubble Nucleation In Superhydrophobic Microchannels Due To Subcritical Heating, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This work experimentally studies the effects of single wall heating on laminar flow in a high-aspect ratio superhydrophobic microchannel. When water that is saturated with air is used as the working liquid, the non-wetted cavities on the superhydrophobic surfaces act as nucleation sites and allow air to effervesce out of the water and onto the surface when heated. Previous works in the literature have only considered the opposite case where the water is undersaturated and absorbs air out the cavities for a microchannel setting. The microchannel considered in this work consists of a rib/cavity structured superhydrophobic surface and a glass …


Hydrodynamic And Thermal Effects Of Sub-Critical Heating On Superhydrophobic Surfaces And Microchannels, Adam M. Cowley Nov 2017

Hydrodynamic And Thermal Effects Of Sub-Critical Heating On Superhydrophobic Surfaces And Microchannels, Adam M. Cowley

Theses and Dissertations

This dissertation focuses on the effects of heating on superhydrophobic (SHPo) surfaces. The work is divided into two main categories: heat transfer without mass transfer and heat transfer in conjunction with mass transfer. Numerical methods are used to explore the prior while experimental methods are utilized for the latter. The numerical work explores convective heat transfer in SHPo parallel plate microchannels and is separated into two stand-alone chapters that have been published archivally. The first considers surfaces with a rib/cavity structure and the second considers surfaces patterned with a square lattice of square posts. Laminar, fully developed, steady flow with …


Dynamic Wetting And Drag Reduction On Superhydrophobic And Liquid-Infused Surfaces, Jeong-Hyun Kim Nov 2016

Dynamic Wetting And Drag Reduction On Superhydrophobic And Liquid-Infused Surfaces, Jeong-Hyun Kim

Doctoral Dissertations

Reducing drag in fluid flow has been one of the most widely studied topics in fluid dynamics due to the significant impact on improving operational efficiencies and cutting cost in applications from the aerospace, automotive and naval industries. Over the past two decades, superhydrophobic surfaces have been in the spotlight due to their ability to reduce frictional drag on the wall surface in both laminar and turbulent flows. Despite the extensive work on superhydrophobic surfaces, there are still a number of open questions remaining. In this dissertation, we investigate how a moving contact line interacts with a superhydrophobic surface by …


Laser-Assisted Microchanneling On Pmma Substrate Utilizing Two-Pass Fabrication Method, Sijie Zhang, Yung C. Shin Aug 2016

Laser-Assisted Microchanneling On Pmma Substrate Utilizing Two-Pass Fabrication Method, Sijie Zhang, Yung C. Shin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microchannel is widely used in microfluidic devices for mixing, chemical reaction, detection, particle separation and etc. CO2 laser-based microchanneling of PMMA as a low cost, rapid, noncontact fabrication method has attracted the attention of industry. However, the typical V-shape grooves fabricated by CO2 laser microchanneling have limitations since the V-shape grooves will affect the flow behavior and heat transfer of the fluid, which are important to the performance of microfluidic devices. A two-pass fabrication method is proposed and investigated in this paper to improve the quality of the PMMA microchannel fabricated by CO2 laser. It was found …


Effect Of Non-Uniform Air-Side Velocity Distribution On Heat Transfer Model Predictions For Microchannel Condenser., Zachary Chapin May 2016

Effect Of Non-Uniform Air-Side Velocity Distribution On Heat Transfer Model Predictions For Microchannel Condenser., Zachary Chapin

Electronic Theses and Dissertations

This is a study of the effects on heat transfer capacity predictions of microchannel condensers when airflow is maldistributed due to the shape of the condenser. The three shapes investigated in this study are flat, U-shape and roll. Each coil was tested in a water calorimeter and those results were compared to the model prediction. The model prediction was calculated using CoilDesigner™ modeling software with standard correlations. Using the uniform airflow assumption, the model over predicted the heat capacity measured in the calorimeter by 5-11% depending on the coil and inlet conditions. The local airflow velocity was measured using a …


Transport Enhancement Of Rate-Limited Chemical Reactions Via Pt-Decorated, Carbon Nanotube Microarray Membranes, Kevin M. Marr Jul 2015

Transport Enhancement Of Rate-Limited Chemical Reactions Via Pt-Decorated, Carbon Nanotube Microarray Membranes, Kevin M. Marr

Theses and Dissertations

Rate limited chemical reactions can be enhanced by improving the mass transport of the suspended analyte to the catalytic (or electrocatalytic) surface. While many attempts have been made to enhance this mass transport, these approaches are limited to utilizing only two enhancement methods – increasing available catalytic surface area, and increasing the flow of analyte in solution. Flow through high aspect ratio microstructures, however, would provide additional mass transport enhancement via boundary layer confinement. Platinum functionalized carbon nanotube microarray membranes (Pt-CNT-MMs) offer enhanced mass transport via all three methods, and were fabricated for demonstration in a H2O2 sample system, for …


High Aspect Ratio, Carbon Nanotube Membranes Decorated With Pt Nanoparticle Urchins For Micro Underwater Vehicle Propulsion Via H2O2 Decomposition, Kevin M. Marr, Bolin Chen, Eric J. Mootz, Jason Geder, Marius Pruessner, Brian J. Melde, Richard R. Vanfleet, Igor L. Medintz, Brian D. Iverson, Jonathan C. Claussen Jun 2015

High Aspect Ratio, Carbon Nanotube Membranes Decorated With Pt Nanoparticle Urchins For Micro Underwater Vehicle Propulsion Via H2O2 Decomposition, Kevin M. Marr, Bolin Chen, Eric J. Mootz, Jason Geder, Marius Pruessner, Brian J. Melde, Richard R. Vanfleet, Igor L. Medintz, Brian D. Iverson, Jonathan C. Claussen

Faculty Publications

The utility of unmanned Micro Underwater Vehicles (MUVs) is paramount for exploring confined spaces, but their spatial agility is often impaired when maneuvers require burst-propulsion. herein we develop high-aspect ratio (150:1), multi-walled carbon nanotube microarray membranes (CNT-MMs) for propulsive, MUV thrust generation by the decomposition of hydrogen peroxide (H2O2). The CNT-MMs are grown via chemical vapor deposition with diamond shaped pores (nominal diagonal dimensions of 4.5 × 9.0 [µm]) and subsequently decorated with urchin-like, platinum (Pt) nanoparticles via a facile, electroless, chemical deposition process. The Pt-CNT-MMs display robust, high catalytic ability with an effective activation energy …


Guided Routing On Spinning Microfluidic Platforms Jan 2015

Guided Routing On Spinning Microfluidic Platforms

Faculty of Engineering University of Malaya

Flow directionality, valving and liquid routing in centrifugal microfluidics (Lab-on-CD) are typically controlled by applying centrifugal and Coriolis forces and have been the subject of active research interest in recent years. Determining and switching the flow direction at a T-junction is a common fluidic operation important for implementing several chemical and clinical assays for Lab-on-CDs. The present work describes a novel approach to route samples and control flow direction on a spinning disc that employs a guiding microstructure that relies on a two-stage valve comprised of an auxiliary inlet, which is a recess embedded at a T-junction, and a bent …


Electrokinetic Instabilities In Ferrofluid Microflows, Dhileep Thanjavur Kumar Aug 2014

Electrokinetic Instabilities In Ferrofluid Microflows, Dhileep Thanjavur Kumar

All Theses

Lab-on-a-chip devices have been increasingly used in the past two decades for chemical and biomedical analysis. These devices employ the concepts of microfluidics and offer the promise of incorporating multiple laboratory processes onto a single portable chip. Electric field has been often employed in microfluidic devices for the ease of fluid and sample control as well as the convenience of chip integration and interfacing. Flow instabilities can take place when two fluids of unequal electrical properties are pumped through a microchannel under the application of an adequately strong electric field. The study of these electrokinetic instabilities in microfluidic devices is …


Fabrication And Enhancement Of Aluminum-Based Microchannel Devices, Paul Joseph Hymel Jan 2014

Fabrication And Enhancement Of Aluminum-Based Microchannel Devices, Paul Joseph Hymel

LSU Master's Theses

Microscale molding replication and transient liquid phase (TLP) bonding were used to fabricate Al-based microchannel heat exchangers (MHEs) and micro gas chromatograph (mGC) columns. Metal-based microchannel heat exchangers often experience corrosion as a result of their operating conditions. To address this problem, an internal anodization method was developed in Al microtubes by pulsing the flow of electrolyte through a microtube when the current dropped below a set value. The anodic aluminum oxide (AAO) films were characterized by scanning electron microscopy (SEM), focused ion beam (FIB) cross sections, and X-ray energy dispersive spectroscopy (EDS) to determine their growth rate and morphology. …


Capillary Filling Of Large Aspect Ratio Channels With Varying Wall Spacing, Dallin B. Murray Jul 2013

Capillary Filling Of Large Aspect Ratio Channels With Varying Wall Spacing, Dallin B. Murray

Theses and Dissertations

Quantification and prediction of capillary fluid flow in planar nanochannels is essential to the development of many emerging nanofluidic technologies. Planar nanochannels are typically produced using the standard nanofabrication processes of thermal bonding or sacrificial etching. Both approaches may yield nanochannels that are bowed and/or exhibit non-uniform (i.e. non-planar) wall spacing. These variations in wall spacing affect the transient dynamics of a liquid plug filling the nanochannel, causing deviations from the classical behavior in a parallel-plate channel as described by the Washburn model. Non uniform wall spacing impacts the overall frictional resistance and influences the meniscus curvature. In this thesis, …


Metal-Based Microchannel Heat Exchangers : Manufacturing And Heat Transfer Testing, Bin Lu Jan 2013

Metal-Based Microchannel Heat Exchangers : Manufacturing And Heat Transfer Testing, Bin Lu

LSU Doctoral Dissertations

This dissertation focuses on improving the functionality of metal-based microchannel heat exchangers (MHEs), as well as pushing this technology toward real-world applications. Design optimization was carried out on MHEs for performance maximization. Double-layered microchannel layout was experimentally studied, and a significant reduction on liquid flow pressure drop penalty was achieved. Other than water, another commonly-used coolant, ethylene glycol, was applied to MHEs, and flow and heat transfer characteristics were quantified. Transient Liquid Phase (TLP) bonding was used for joining Cu structures. For further understanding of the MHE heat transfer, a detailed examination was carried out on the TLP bonding interface …


Heat Transfer In Electroosmotic Flow Of Power-Law Fluids In Micro-Channel, Omkareshwar Rao Bakaraju Jan 2009

Heat Transfer In Electroosmotic Flow Of Power-Law Fluids In Micro-Channel, Omkareshwar Rao Bakaraju

ETD Archive

The present study examines heat transfer in electro-osmotic flow of power-law fluids in a micro-channel analytically. The boundary layer equations governing the flow of power-law fluids in a micro-channel have been solved. Heat transfer characteristics such as the temperature distribution and Nusselt number are presented for parametric values of electro-kinetic parameter kH(where k-1 is the Debye length and H is semi-channel height of the micro-channel) and Brinkman number. Uniform surface heat flux boundary condition has been considered. The effects of the Brinkman number on the Nusselt number for specific values of the flow behavior index (n) are analytically determined. This …


Mapping Of Pressure Losses Through Microchannels With Sweeping-Bends Of Various Angle And Radii, Chase Hansel Jan 2008

Mapping Of Pressure Losses Through Microchannels With Sweeping-Bends Of Various Angle And Radii, Chase Hansel

Electronic Theses and Dissertations

MEMS (Micro Electro Mechanical Systems) have received a great deal of attention in both the research and industrial sectors in recent decades. The broad MEMS category, microfluidics, the study of fluid flow through channels measured on the micrometer scale, plays an important role in devices such as compact heat exchangers, chemical and biological sensors, and lab-on-a-chip devices. Most of the research has been focused on how entire systems operate, both experimentally and through simulation. This paper strives, systematically, to map them through experimentation of the previous to untested realm of pressure loss through laminar square-profile sweeping-bend microchannels. Channels were fabricated …


Experimental And Numerical Investigation Of Fluid Flow And Heat Transfer In Microchannels, Wynn Allen Phillips Jan 2008

Experimental And Numerical Investigation Of Fluid Flow And Heat Transfer In Microchannels, Wynn Allen Phillips

LSU Master's Theses

Microchannels are of current interest for use in heat exchangers where very high heat transfer performance is desired. Microchannels provide very high heat transfer coefficients because of their small hydraulic diameters. In this study, an investigation of fluid flow and heat transfer in microchannels is conducted. A review of the literature published regarding fluid flow and heat transfer in microchannels is provided in this study. A thorough background on the theory of internal convective heat transfer is provided as well. A critical analysis of some of the published heat transfer experiments on microchannels is also given. It was found that …


Numerical Study Of Fully Developed Laminar And Turbulent Flow Through Microchannels With Longitudinal Microstructures, Kevin B. Jeffs Nov 2007

Numerical Study Of Fully Developed Laminar And Turbulent Flow Through Microchannels With Longitudinal Microstructures, Kevin B. Jeffs

Theses and Dissertations

Due to the increase of application in a number of emerging technologies, a growing amount of research has focused on the reduction of drag in microfluidic transport. A novel approach reported in the recent literature is to fabricate micro-ribs and cavities in the channel wall that are then treated with a hydrophobic coating. Such surfaces have been termed super- or ultrahydrophobic and the contact area between the flowing liquid and the solid wall is greatly reduced. Further, due to the scale of the micropatterned structures, the liquid is unable to wet the cavity and a liquid meniscus is formed between …


Design And Fabrication Of Out-Of-Plane Silicon Microneedles With Integrated Hydrophobic Microchannels, Michael S. Diehl Aug 2007

Design And Fabrication Of Out-Of-Plane Silicon Microneedles With Integrated Hydrophobic Microchannels, Michael S. Diehl

Theses and Dissertations

Microfabricated needles have the potential for inexpensive drug delivery without pain. The ability to deliver medication painlessly to patients will someday be not just hoped for but expected by the general public. The commercialization of this technology will also lead to other valuable technologies, such as systems that continually monitor and control insulin or other drugs in diabetic patients. This research presents fabrication procedures developed to produce pyramidal-shaped microneedles with microchannels that will allow for fluid delivery. The microchannels are etched into the substrate surface of a [100] silicon wafer using inductively coupled plasma etching. After the channel etch a …


Simulations And Experimental Analysis Of High-Aspect-Ratio Diffusive Micro-Mixers, Amit Maha Jan 2005

Simulations And Experimental Analysis Of High-Aspect-Ratio Diffusive Micro-Mixers, Amit Maha

LSU Master's Theses

Passive (diffusional) mixing has been used in designing high-aspect-ratio micro-mixers for the purpose of performing the Liagase Detection Reaction (LDR). A simple model was used to design such mixers optimized for pressure drop or time required to deliver a prescribed volume of mixture. The types of mixers considered are simple, cheap, and durable and can perform over a broad range of volumetric flow rates at reasonably modest pressure drops. The fluids typically have a very low diffusion coefficient of=1.2x10^10m^2/s, and thus diffusional mixing can only be effective in high-aspect-ratio micro-channels. A realizable aspect ratio of 6 has been considered initially …


Thermally Developing Electro-Osmotic Convection In Circular Microchannels, Spencer L. Broderick Nov 2004

Thermally Developing Electro-Osmotic Convection In Circular Microchannels, Spencer L. Broderick

Theses and Dissertations

Thermally developing, electro-osmotically generated flow has been analyzed for a circular microtube under imposed constant wall temperature (CWT) and constant wall heat flux (CHF) boundary conditions. Established by a voltage potential gradient along the length of the microtube, the hydrodynamics of such a flow dictate either a slug flow velocity profile (under conditions of large tube radius-to-Debye length ratio, a/lambda_d) or a family of electro-osmotic flow (EOF) velocity profiles that depend on a/lambda_d. The imposed voltage gradient results in Joule heating in the fluid with an associated volumetric source of energy. For this scenario coupled with a slug flow velocity …


A Comparative Analysis Of Studies On Heat Transfer And Fluid Flow In Microchannels, Choondal B. Sobhan, Suresh V. Garimella Apr 2001

A Comparative Analysis Of Studies On Heat Transfer And Fluid Flow In Microchannels, Choondal B. Sobhan, Suresh V. Garimella

CTRC Research Publications

The extremely high rates of heat transfer obtained by employing microchannels makes them an attractive alternative to conventional methods of heat dissipation, especially in applications related to the cooling of microelectronics. A compilation and analysis of the results from investigations on fluid flow and heat transfer in micro- and mini-channels and microtubes in the literature is presented in this review, with a special emphasis on quantitative experimental results and theoretical predictions. Anomalies and deviations from the behavior expected for conventional channels, both in terms of the frictional and heat transfer characteristics, are discussed.


The Microchannel Flow Of A Micropolar Fluid, Guohua Liu Oct 1999

The Microchannel Flow Of A Micropolar Fluid, Guohua Liu

Doctoral Dissertations

Micro-channel flows have been computed to investigate the influence of Navier-Stokes formulation for the slip-flow boundary condition, and a micro-polar fluid model, respectively.

The results of the slip boundary condition show that the current methodology is valid for slip-flow regime (i.e., for values of Knudsen number less than approximately 0.1). Drag reduction phenomena apparent in some micro-channels can be explained by slip-flow theory. These results are in agreement with some computations and experiments.

An ad hoc micro-polar fluid model is developed to investigate the influence of micro effects, such as micro-gyration, in micro-scale flows. The foundation of the ad hoc …