Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Observation Of Tunneling Effects In Lateral Nanowire Pn Junctions, Sri Purwiyanti, Arief Udhiarto, Daniel Moraru, Takeshi Mizuno, Djoko Hartanto, Michiharu Tabe Aug 2014

Observation Of Tunneling Effects In Lateral Nanowire Pn Junctions, Sri Purwiyanti, Arief Udhiarto, Daniel Moraru, Takeshi Mizuno, Djoko Hartanto, Michiharu Tabe

Makara Journal of Technology

As electronic device dimensions are continuously reduced, applied bias conditions significantly change and the transport mechanisms must be reconsidered. Tunneling devices are promising for scaled-down electronics because of expected high-speed operation and relatively low bias. In this work, we investigated the tunneling features in silicon-oninsulator lateral nanowire pn junction and pin junction devices. By controlling the substrate voltage, tunneling features can be observed in the electrical characteristics. We found that the minimum substrate voltage required for tunneling to occur in pn junctions is higher as compared with pin junctions. The main cause of these effects relies in the difference between …


Piezoelectric In Situ Transmission Electron Microscopy Technique For Direct Observations Of Fatigue Damage Accumulation In Constrained Metallic Thin Films, Xiaoli Tan, T. Du, J.K. Shang Jan 2002

Piezoelectric In Situ Transmission Electron Microscopy Technique For Direct Observations Of Fatigue Damage Accumulation In Constrained Metallic Thin Films, Xiaoli Tan, T. Du, J.K. Shang

Xiaoli Tan

A piezoelectricin situtransmission electron microscopy(TEM) technique has been developed to observe the damage mechanism in constrained metallic thin films under cyclic loading. The technique was based on the piezoelectric actuation of a multilayered structure in which a metallic thin film was sandwiched between a piezoelectric actuator and a silicon substrate. An alternating electric field with a static offset was applied on the piezoelectric actuator to drive the crack growth in the thin metallic layer while the sample was imaged in TEM. The technique was demonstrated on solder thin films where cavitation was found to be the dominant fatigue damage mechanism.