Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Mechanical Engineering

Development Of Novel Turbomachinery Manufacturing Methods, Timothy P. Winkler Mar 2023

Development Of Novel Turbomachinery Manufacturing Methods, Timothy P. Winkler

Theses and Dissertations

Compact turbine engines are of increasing interest as a means of propulsion for small, lightweight, low cost, unmanned aerial systems. This study looks to leverage advancements in novel manufacturing technology to produce turbomachinery components while simultaneously reducing costs and manufacturing time. To determine the feasibility of drop-in replacements for stock components this study focused on several research areas. This included materials research on both polymer-reinforced and ceramic materials, specimen tensile testing to determine temperature-dependent material properties, finite element analysis of multiple candidate materials, design and fabrication of a spin test rig, and physical spin testing of manufactured components to predict …


Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager Mar 2019

Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager

Theses and Dissertations

The manufacture of components in Additive Manufacturing processes is limited by the range of materials available. Qualification of materials for Additive Manufacturing is time intensive, and is often specific to a single type of machine. In this study, an approach to selecting power, speed, and hatch spacing values for a newly powderized material, AF9628 weapons steel, is described that results in highly dense (>99.9%) parts on an MLab 200R Cusing. Initial power and speed values used in a weld track study were selected based on a survey of parameters used on similar materials, with a focus on the energy …


Ceramic Matrix Composite Characterization Under A Combustion And Loading Environment, Andrew R. Nye Mar 2009

Ceramic Matrix Composite Characterization Under A Combustion And Loading Environment, Andrew R. Nye

Theses and Dissertations

Lightweight materials that can withstand high temperatures and corrosive environments are constantly sought after in the aerospace industry, typically for Gas Turbine Engine (GTE) application. These materials need to retain their strength throughout the long service period they would see in the combustor and turbine components of a GTE. One material that is ideal for these types of applications is an oxide/oxide Ceramic Matrix Composite (CMC). The fatigue behavior of the oxide/oxide CMC NextelTM 720/Alumina (N720/A) was investigated in a unique high temperature environment. N720/A consisted of an 8-harness satin weave of NextelTM aluminum oxide/silicon oxide fibers bound …


Characterization Of Intercalated Graphite Fibers For Microelectromechanical Systems (Mems) Applications, Bryan W. Winningham Mar 2007

Characterization Of Intercalated Graphite Fibers For Microelectromechanical Systems (Mems) Applications, Bryan W. Winningham

Theses and Dissertations

Research was accomplished to characterize the electrical and physical characteristic changes of the Thornel® P-100 carbon fiber and five variants when intercalated with 96% sulfuric acid and incorporated the use of Microelectromechanical Systems (MEMS) structures for testing purposes. The five fiber variants were oxidized in 1 M nitric acid at 0.5 A for 30 seconds, 1 and 2 minutes, the last two samples were detreated at 1150 °C for one hour prior to the nitric acid treatment. The fibers were mounted onto a MEMS die, placed into a chip carrier, sulfuric acid added, the chip carrier sealed and testing accomplished. …


Characterization Of Stress In Gan-On-Sapphire Microelectromechanical Systems (Mems) Structures Using Micro-Raman Spectroscopy, Francisco E. Parada Mar 2006

Characterization Of Stress In Gan-On-Sapphire Microelectromechanical Systems (Mems) Structures Using Micro-Raman Spectroscopy, Francisco E. Parada

Theses and Dissertations

Micro-Raman (µRaman) spectroscopy is an efficient, non-destructive technique widely used to determine the quality of semiconductor materials and microelectromechanical systems. This work characterizes the stress distribution in wurtzite gallium nitride grown on c-plane sapphire substrates by molecular beam epitaxy. This wide bandgap semiconductor material is being considered by the Air Force Research Laboratory for the fabrication of shock-hardened MEMS accelerometers. µRaman spectroscopy is particularly useful for stress characterization because of its ability to measure the spectral shifts in Raman peaks in a material, and correlate those shifts to stress and strain. The spectral peak shift as a function of stress, …


Detection Of Residual Stress In Sic Mems Using Μ-Raman Spectroscopy, John C. Zingarelli Mar 2005

Detection Of Residual Stress In Sic Mems Using Μ-Raman Spectroscopy, John C. Zingarelli

Theses and Dissertations

Micro-Raman (µ-Raman) spectroscopy is used to measure residual stress in two silicon carbide (SiC) poly-types: single-crystal, hexagonally symmetric 6H-SiC, and polycrystalline, cubic 3C-SiC thin films deposited on Si substrates. Both are used in micro-electrical-mechanical systems (MEMS) devices. By employing an incorporated piezoelectric stage with submicron positioning capabilities along with the Raman spectral acquisition, spatial scans are performed to reveal areas in the 6H-SiC MEMS structures that contain residual stress. Shifts in the transverse optical (TO) Stokes peaks of up to 2 cm-1 are correlated to the material strain induced by the MEMS fabrication process through the development of phonon …


Fretting Fatigue Behavior Of A Titanium Alloy Ti-6al-4v At Elevated Temperature, Onder Sahan Mar 2002

Fretting Fatigue Behavior Of A Titanium Alloy Ti-6al-4v At Elevated Temperature, Onder Sahan

Theses and Dissertations

The purpose of this research is to investigate the fretting fatigue behavior of the titanium alloy Ti-6Al-4V at elevated temperature is investigated. Fretting and plain fatigue experiments are conducted at 260 °C. Crack initiation location and crack initiation orientation is measured and fretting and plain fatigue life data of the specimens from these tests are obtained. Fatigue parameters capable of predicting the number of cycles to specimen failure, the crack location and the crack orientation along the contact surface are analyzed. The parameters are calculated by using the computed stresses and strains obtained from the finite element analysis. The mechanisms …