Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng Dec 2023

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng

Dissertations

This dissertation introduces a novel vacuum technology that leverages low-pressure saturated steam and cooling-controlled condensation, offering an efficient way to utilize low-grade thermal energy sources like waste heat, steam, or solar energy. At the heart of this technology is a unique duo-chamber vacuum pump system, featuring a reciprocating piston and a heat-conductive wall, designed to generate a vacuum through steam-condensation and cooling processes.

The core of this research lies in developing and validating mechanistic models for the steam-condensation depressurization process, a complex phenomenon involving phase change and transport mechanisms. Prior to this work, these mechanisms were not sufficiently modeled or …


Electro-Chemo-Mechanics Of The Interfaces In 2d-3d Heterostructure Electrodes, Vidushi Sharma Dec 2021

Electro-Chemo-Mechanics Of The Interfaces In 2d-3d Heterostructure Electrodes, Vidushi Sharma

Dissertations

Unique heterostructure electrodes comprising two-dimensional (2D) materials and bulk three dimensional (3D) high-performance active electrodes are recently synthesized and experimentally tested for their electrochemical performance in metal-ion batteries. Such electrodes exhibit long cycle life while they also retain high-capacity inherent to the active electrode. The role of 2D material is to provide a supportive mesh that allows buffer space for volume expansions upon ion intercalation in the active material and establishes a continuous electronic contact. Therefore, the binding strength between both materials is crucial for the success of such electrodes. Furthermore, battery cycles may bring about phase transformations in the …


A Meta-Analysis Of Energy Savings From Lighting Programs In Michigan, Teryila Ephraim Amough Jun 2017

A Meta-Analysis Of Energy Savings From Lighting Programs In Michigan, Teryila Ephraim Amough

Dissertations

In order to fill the gap in aggregates savings, the challenges faced by electric utilities for the demand of lighting energy are addressed by lighting efficiency programs. The shrinking capacity and electrical grid reliability call for improved ways to evaluate energy saving programs with evaluation methods that are robust in determining the impact of lighting programs. This study employed meta-analysis as an evaluation method to determine energy savings, impact, emissions of greenhouse gases (GHG), pollutants, and health effects from lighting programs in Michigan. The findings of the study showed the programs impact in Hedges’ g of 0.36 for the overall …


A Metaevaluation Of Energy Efficiency Evaluations, Brandy Brown Apr 2014

A Metaevaluation Of Energy Efficiency Evaluations, Brandy Brown

Dissertations

This study systematically reviews the methodological characteristics of energy efficiency evaluations and uses metaevaluation to assess its quality. Metaevaluation is used to systematically assess the quality of evaluation products, confirm that evaluations deliver sound findings and conclusions, are useful to the client, are credible, are ethically conducted, and are done as cost-effective as possible. The results of this study show that the ability to accurately assess evaluation for methodological quality using evaluations reports as a primary data source depends on the presence of detailed descriptions of evaluation methods. Furthermore, the study suggests that methodological variations of energy efficiency evaluations coalesce …


Organic Solar Cells Based On High Dielectric Constant Materials: An Approach To Increase Efficiency, Khalil Jumah Tawfiq Hamam Jun 2013

Organic Solar Cells Based On High Dielectric Constant Materials: An Approach To Increase Efficiency, Khalil Jumah Tawfiq Hamam

Dissertations

The efficiency of organic solar cells still lags behind inorganic solar cells due to their low dielectric constant which results in a weakly screened columbic attraction between the photogenerated electron-hole system, therefore the probability of charge separating is low. Having an organic material with a high dielectric constant could be the solution to get separated charges or at least weakly bounded electron-hole pairs. Therefore, high dielectric constant materials have been investigated and studied by measuring modified metal-phthalocyanine (MePc) and polyaniline in pellets and thin films. The dielectric constant was investigated as a function of temperature and frequency in the range …