Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Long Life Electrochemical Diodes For Continuous Electrowetting, Mehdi Khodayari, Ben Hahne, Nathan B. Crane Jan 2014

Long Life Electrochemical Diodes For Continuous Electrowetting, Mehdi Khodayari, Ben Hahne, Nathan B. Crane

Faculty Publications

The rate of electrochemical reactions in some systems varies with the polarity of the overpotential on the working electrode, introducing diode-like behavior at the electrode/electrolyte interface. However, with repeated bipolar cycling, the electrochemical current damages the electrodes. We have connected electrochemical diodes in series with opposing polarities to reduce the diode current while charging a capacitive circuit. We have previously used this capacitive circuit arrangement to actuate aqueous droplets continuously using the electrowetting (EW) effect. In this study, the performance of electrochemical diodes under repeated voltage cycles is investigated. Aluminum and titanium electrodes in contact with three electrolyte solutions (0.1 …


Floating Electrode Electrowetting On Hydrophobic Dielectric With An Sio2 Layer, Mehdi Khodayari, Benjamin Hahne, Nathan B. Crane, Alex A. Volinsky May 2013

Floating Electrode Electrowetting On Hydrophobic Dielectric With An Sio2 Layer, Mehdi Khodayari, Benjamin Hahne, Nathan B. Crane, Alex A. Volinsky

Faculty Publications

Floating electrode electrowetting is caused by dc voltage applied to a liquid droplet on the Cytop surface, without electrical connection to the substrate. The effect is caused by the charge separation in the floating electrode. A highly-resistive thermally-grown SiO2 layer underneath the Cytop enables the droplet to hold charges without leakage, which is the key contribution. Electrowetting with an SiO2 layer shows a memory effect, where the wetting angle stays the same after the auxiliary electrode is removed from the droplet in both conventional and floating electrode electrowetting. Floating electrode electrowetting provides an alternative configuration for developing advanced electrowetting-based devices.


A Material System For Reliable Low Voltage Anodic Electrowetting, Mehdi Khodayari, Jose Carballo, Nathan B. Crane Jan 2012

A Material System For Reliable Low Voltage Anodic Electrowetting, Mehdi Khodayari, Jose Carballo, Nathan B. Crane

Faculty Publications

Electrowetting on dielectric is demonstrated with a thin spin-coated fluoropolymer over an aluminum electrode. Previous efforts to use thin spin-coated dielectric layers for electrowetting have shown limited success due to defects in the layers. However, when used with a citric acid electrolyte and anodic voltages, repeatable droplet actuation is achieved for 5000 cycles with an actuation of just 10 V. This offers the potential for low voltage electrowetting systems that can be manufactured with a simple low-cost process.


Fluidic Assembly At The Microscale: Progress And Prospects, Nathan B. Crane, Onursal Onen, Jose Carballo, Qi Ni, Rasim Guldiken Jan 2012

Fluidic Assembly At The Microscale: Progress And Prospects, Nathan B. Crane, Onursal Onen, Jose Carballo, Qi Ni, Rasim Guldiken

Faculty Publications

Assembly permits the integration of different materials and manufacturing processes to increase system functionality. It is an essential step in the fabrication of useful systems across size scales from buildings to molecules. However, at the microscale, traditional “grasp and release” assembly methods and chemically inspired self-assembly processes are less effective due to many scaling effects. Many methods have been developed for improving microscale assembly. Often these methods include fluidic forces or the use a fluidic medium in order to enhance their performance. This paper reviews basic assembly theory and modeling methods. Three basic assembly strategies (tool-directed, process-directed, and part-directed) are …


Bidirectional Electrowetting Actuation With Voltage Polarity Dependence, Nathan B. Crane, Alex A. Volinsky, Pradeep Mishra, Ajay Rajgadkar, Mehdi Khodayari Mar 2010

Bidirectional Electrowetting Actuation With Voltage Polarity Dependence, Nathan B. Crane, Alex A. Volinsky, Pradeep Mishra, Ajay Rajgadkar, Mehdi Khodayari

Faculty Publications

This work presents an electrowetting system in which the actuation direction depends on the polarity of the applied voltage. Since electrowetting response depends on the voltage squared, it is typically independent of voltage sign to first order. However, the introduction of an electrochemicaal diode into the equivalent electrical circuit permits polarity-dependent behavior. Electrochemical diodes were created by making holes in the dielectric. The aluminum electrodes passivate and prevent current flow in one direction, creating diode-like behavior with high breakdown voltage. The resulting actuation forces were directly measured and are of comparable magnitude for both actuation directions.