Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown Dec 2021

Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown

Theses and Dissertations

BEVs are a critical pathway towards achieving energy independence and meeting greenhouse and pollutant gas reduction goals in the current and future transportation sector [1]. Automotive manufacturers are increasingly investing in the refinement of electric vehicles as they are becoming an increasingly popular response to the global need for reduced transportation emissions. Therefore, there is a desire to extract the most fuel economy from a vehicle as possible. Some areas that manufacturers spend much effort on include minimizing the vehicle’s mass, body drag coefficient, and drag within the powertrain. When these values are defined or unchangeable, interest is driven to …


Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius Dec 2021

Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius

Master's Theses

The Gold Tree Solar Farm, designed by REC Solar, has a rated output power of 4.5 MW and began operation in 2018 to provide electricity to Cal Poly’s campus. Gold Tree Solar Farm site terrain consists of rolling hills and uneven slopes. The uneven typography results in interrow shading, requiring a modified tracking control algorithm to maximize power production. Predicting a utility solar field’s lifetime energy yield is a critical step in assessing project feasibility and calculating project revenue. The MATLAB-based predictive power model developed for this field overpredicted power in the middle of the day. The purpose of this …


Electromagnetic Formation Control Using Frequency Multiplexing, Zahra Abbasi Jan 2021

Electromagnetic Formation Control Using Frequency Multiplexing, Zahra Abbasi

Theses and Dissertations--Mechanical Engineering

This dissertation addresses control of relative positions and orientations of formation flying satellites using magnetic interactions. Electromagnetic formation flight (EMFF) is implemented, in which each satellite is equipped with a set of electromagnetic coils to generate an electromagnetic field. Traditional EMFF technique applies DC magnetic fields which lead to a nonlinear and highly coupled formation dynamics that allow for only position or orientation control of the satellites. We present a new frequency multiplexing method, which is a technique that uses multi-frequency sinusoidal controls, to approximately decouple the formation dynamics and to provide enough controls for both position and orientation control. …