Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown Dec 2021

Torque Vectoring To Maximize Straight-Line Efficiency In An All-Electric Vehicle With Independent Rear Motor Control, William Blake Brown

Theses and Dissertations

BEVs are a critical pathway towards achieving energy independence and meeting greenhouse and pollutant gas reduction goals in the current and future transportation sector [1]. Automotive manufacturers are increasingly investing in the refinement of electric vehicles as they are becoming an increasingly popular response to the global need for reduced transportation emissions. Therefore, there is a desire to extract the most fuel economy from a vehicle as possible. Some areas that manufacturers spend much effort on include minimizing the vehicle’s mass, body drag coefficient, and drag within the powertrain. When these values are defined or unchangeable, interest is driven to …


Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius Dec 2021

Performance Loss Rate And Temperature Modeling In Predictive Energy Yield Programs For Utility-Scale Solar Power Plants, Katelynn M. Dinius

Master's Theses

The Gold Tree Solar Farm, designed by REC Solar, has a rated output power of 4.5 MW and began operation in 2018 to provide electricity to Cal Poly’s campus. Gold Tree Solar Farm site terrain consists of rolling hills and uneven slopes. The uneven typography results in interrow shading, requiring a modified tracking control algorithm to maximize power production. Predicting a utility solar field’s lifetime energy yield is a critical step in assessing project feasibility and calculating project revenue. The MATLAB-based predictive power model developed for this field overpredicted power in the middle of the day. The purpose of this …


A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed Apr 2021

A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed

Mechanical Engineering Graduate Research

Recently, many renewable energy (RE) initiatives around the world are based on general frameworks that accommodate the regional assessment taking into account the mismatch of supply and demand with pre-set goals to reduce energy costs and harmful emissions. Hence, relying entirely on individual assessment and RE deployment scenarios may not be effective. Instead, developing a multi-faceted RE assessment framework is vital to achieving these goals. In this study, a regional RE assessment approach is presented taking into account the mismatch of supply and demand with an emphasis on Photovoltaic (PV) and wind turbine systems. The study incorporates mapping of renewable …


An Advanced Machine Learning Based Energy Management Of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand, Tianze Lan, Kittisak Jermsittiparsert, Sara T. Al-Rashood, Mostafa Rezaei, Loiy Al-Ghussain, Mohammed A. Mohammed Jan 2021

An Advanced Machine Learning Based Energy Management Of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand, Tianze Lan, Kittisak Jermsittiparsert, Sara T. Al-Rashood, Mostafa Rezaei, Loiy Al-Ghussain, Mohammed A. Mohammed

Mechanical Engineering Graduate Research

Renewable microgrids are new solutions for enhanced security, improved reliability and boosted power quality and operation in power systems. By deploying different sources of renewables such as solar panels and wind units, renewable microgrids can enhance reducing the greenhouse gasses and improve the efficiency. This paper proposes a machine learning based approach for energy management in renewable microgrids considering a reconfigurable structure based on remote switching of tie and sectionalizing. The suggested method considers the advanced support vector machine for modeling and estimating the charging demand of hybrid electric vehicles (HEVs). In order to mitigate the charging effects of HEVs …


Electromagnetic Formation Control Using Frequency Multiplexing, Zahra Abbasi Jan 2021

Electromagnetic Formation Control Using Frequency Multiplexing, Zahra Abbasi

Theses and Dissertations--Mechanical Engineering

This dissertation addresses control of relative positions and orientations of formation flying satellites using magnetic interactions. Electromagnetic formation flight (EMFF) is implemented, in which each satellite is equipped with a set of electromagnetic coils to generate an electromagnetic field. Traditional EMFF technique applies DC magnetic fields which lead to a nonlinear and highly coupled formation dynamics that allow for only position or orientation control of the satellites. We present a new frequency multiplexing method, which is a technique that uses multi-frequency sinusoidal controls, to approximately decouple the formation dynamics and to provide enough controls for both position and orientation control. …