Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Conceptual Development Of An Impact-Attenuation System For Intersecting Roadways, Joseph G. Putjenter Apr 2015

Conceptual Development Of An Impact-Attenuation System For Intersecting Roadways, Joseph G. Putjenter

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Longitudinal barriers are commonly used to shield hazards, including stiff bridge rail ends and slopes. In some locations, a secondary roadway intersects the primary roadway within the guardrail’s length-of-need (LON). Some intersections have as little as 15 ft (4.6 m) between the intersection and beginning of the bridge railing, which require short-radius guardrail systems. No short-radius systems have been tested and approved to current impact safety standards for shielding hazards with these conditions.

Site conditions provided by the Nebraska Department of Roads were used to determine the constraints for a new safety treatment for intersecting roadways and include intersection radii, …


Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza Jan 2015

Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Railroad transportation is very important for economic growth and effective maintenance is one critical factor for its economic sustainability. The high repetitive forces from a moving railcar induce cyclic stresses that lead to rail bending and potential deterioration due to fatigue crack initiation and propagation. Previous research for prediction of fatigue life has been done under the assumptions of a uniform track bed and a homogeneous rail. However the spatial variation of the track stiffness is expected to increase the maximum stresses in the rail and, therefore, accelerate the fatigue process. The research described in this dissertation is focused on …