Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

2015

Discipline
Keyword
Publication

Articles 1 - 30 of 111

Full-Text Articles in Mechanical Engineering

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio Dec 2015

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio

Nebraska Center for Energy Sciences Research: Publications

We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case …


Modeling And Simulation Of Micro Electrical Discharge Machining Process, Bai Shao Dec 2015

Modeling And Simulation Of Micro Electrical Discharge Machining Process, Bai Shao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Micro parts and systems are playing crucial roles in the area of semiconductor, biomedical device, micro fluid devices, automotive, aerospace and so forth. Micro manufacturing is one of the most important technologies in realizing miniaturization. Compared to other micro manufacturing methods, micro-EDM is drawing lots of attention due to its ability to machine complex 3D parts regardless of the hardness of the workpiece material.

Micro-EDM is the cumulative result of numerous single discharges; therefore, it is crucial to understand the single discharge material removal process in micro-EDM. However, due to the stochastic nature and complex process mechanism, micro-EDM, including its …


Microstructure Alone Induced Wetting Transition From Hydrophilic To Hydrophobic On Silicon And Graphene, Henry L. Ems Dec 2015

Microstructure Alone Induced Wetting Transition From Hydrophilic To Hydrophobic On Silicon And Graphene, Henry L. Ems

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In the present work, transition from hydrophilic to hydrophobic wetting states for an intrinsically hydrophilic surface (contact angle less than 45 degrees) using only surface microstructuring is presented. The surface microstructures are re-entrant microcavities (inverted trapezoidal microstructures) which promote air entrapment below the water droplet causing a Cassie wetting state as opposed to a Wenzel state where the surface is completely wetted. The microstructures were fabricated on a Silicon-On-Insulator (SOI) wafer through steps of deposition, photolithography, etching, and bonding. Contact angle measurements demonstrated the ability of the microfabricated surfaces to sustain large contact angles above 100°, in comparison to a …


Imaging Thermal Conductivity With Nanoscale Resolution Using A Scanning Spin Probe, Abdelghani Laraoui, Halley Aycock-Rizzo, Yang Gao, Xi Lu, Elisa Riedo, Carlos A. Meriles Nov 2015

Imaging Thermal Conductivity With Nanoscale Resolution Using A Scanning Spin Probe, Abdelghani Laraoui, Halley Aycock-Rizzo, Yang Gao, Xi Lu, Elisa Riedo, Carlos A. Meriles

Department of Mechanical and Materials Engineering: Faculty Publications

The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. …


Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer Nov 2015

Biomechanical Investigation Of Elite Place-Kicking, Chase M. Pfeifer

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Many studies aim to understand the fundamentals of kicking commonly displayed by soccer players [4,6,10,16,17,18,24,25,28,29,30,34,36,38,40]. Of those studies, most are limited to a two-dimensional (2D) analysis using high-speed cameras for position tracking or utilizing electromyography to observe the activity of select muscles [4,6,18,25,29,36]. The few studies that investigate kicking using a three-dimensional (3D) model are limited in their position tracking capabilities and focus mainly on joint flexion potentials and foot speed.

This dissertation is a comprehensive biomechanical analysis (kinematic and EMG) of the field-goal place-kicking techniques of four elite kickers in American football. Data were compared and contrasted with ball …


System And Method For Estimating States Of Spacecraft In Planet-Moon Environment, Piyush Grover Aug 2015

System And Method For Estimating States Of Spacecraft In Planet-Moon Environment, Piyush Grover

Department of Mechanical and Materials Engineering: Faculty Publications

A method estimates a state of a spacecraft in a planet-moon environment by executing iteratively a particle filter. The particle filter comprising integrates individually states of each particle of the particle filter according to a probability-evolution equation using a model of the state of the spacecraft represented as a planar circular restricted three-body problem and determines a prior probability of each particle as a previous posterior probability of a corresponding particle during a previous iteration. A joint probability distribution of the state of the spacecraft is determines using the states of each particle and the prior probabilities of each particle …


An Estimate Of The Second-Order In-Plane Acceleration Sensitivity Of A Y-Cut Quartz Thickness-Shear Resonator, Huijing He, Jiashi Yang, John A. Kosinski Aug 2015

An Estimate Of The Second-Order In-Plane Acceleration Sensitivity Of A Y-Cut Quartz Thickness-Shear Resonator, Huijing He, Jiashi Yang, John A. Kosinski

Department of Mechanical and Materials Engineering: Faculty Publications

We perform a theoretical analysis of the second-order in-plane acceleration sensitivity of a Y-cut quartz thick-ness-shear mode resonator. The second-order nonlinear theory of elasticity for anisotropic crystals is used to determine the biasing fields in the resonator under in-plane acceleration. The acceleration-induced frequency shift is determined from a per-turbation analysis based on the plate equations for small-amplitude vibrations superposed on a finite bias. We show that, whereas the first-order acceleration-induced frequency shift is zero for a structurally symmetric resonator under in-plane ac-celeration, the second-order frequency shift is nonzero and is quadratic in the acceleration. As the fourth-order nonlinear elastic constants …


A Sensorless Haptic Interface For Robotic Minimally Invasive Surgery, Baoliang Zhao Aug 2015

A Sensorless Haptic Interface For Robotic Minimally Invasive Surgery, Baoliang Zhao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Robotic minimally invasive surgery (R-MIS) has gained in popularity due to its advantages of improving the accuracy and dexterity of surgical interventions while minimizing trauma to the patient. However, because of the loss of direct contact with the surgical site, the surgeon cannot perceive tactile information, which may adversely affect surgical efficiency and/or efficacy. The lack of haptic feedback is regarded as a limiting factor in existing R-MIS technology.

To solve this problem, researchers have incorporated force sensors on the surgical tools to measure the tool-tissue interaction forces, and reproduce these forces at the surgeon console. However, the employment of …


Three-Dimensional Scaffolds Of Graphene, Carbon Nanotubes And Transition-Metal Oxides For Applications In Electronics, Sensors And Energy Storage, Gilbert N. Mbah Aug 2015

Three-Dimensional Scaffolds Of Graphene, Carbon Nanotubes And Transition-Metal Oxides For Applications In Electronics, Sensors And Energy Storage, Gilbert N. Mbah

Department of Chemistry: Dissertations, Theses, and Student Research

Electronics, sensors and energy storage devices are the new waves behind economic development, security and communication1. Engineering small sizes of electronic, sensors and energy storage devices is the hurdle limiting efficient, portable and vast applications of Nano-devices for economic, security and communication advancement2. Silicon the major material used in transistors has approached its limit to fabricated Nano-devices3. The discovery of free standing, one atomic layer thick and two-dimensional graphene sheets with high conductivity, inert, high specific surface area, stable and high tensile strength material in 2004 has shown capabilities to replaced silicon in electronics, …


Simulation And Validation Of Radio Frequency Heating Of Shell Eggs, Soon Kiat Lau Jul 2015

Simulation And Validation Of Radio Frequency Heating Of Shell Eggs, Soon Kiat Lau

Department of Food Science and Technology: Dissertations, Theses, and Student Research

Finite element models were developed with the purpose of finding an optimal radio frequency (RF) heating setup for pasteurizing shell eggs. Material properties of the yolk, albumen, and shell were measured and fitted into equations that were used as inputs for the model. When the egg was heated by itself, heating tend to be focused at the air cell to result in a “coagulation ring.” The focused heating near the air cell of the egg prevented satisfactory pasteurization of the egg, but deeper analysis of the simulation results offered a new perspective on how non-uniform RF heating could occur in …


Biodegradable Medical Device Having An Adjustable Degradation Rate And Methods Of Making The Same, Yuebin Guo, Michael Sealy, Meisam Salahshoor Pirsoltan Jul 2015

Biodegradable Medical Device Having An Adjustable Degradation Rate And Methods Of Making The Same, Yuebin Guo, Michael Sealy, Meisam Salahshoor Pirsoltan

Department of Mechanical and Materials Engineering: Faculty Publications

Disclosed herein are biodegradable medical devices comprising biodegradable material (e.g., magnesium-calcium alloys) having an adjustable rate of degradation that can be used in various applications, including, but not limited to, drug delivery applications, cardiovascular applications, and orthopedic applications to make biodegradable and biocompatible devices. Also disclosed herein are methods of making biodegradable medical devices comprising biodegradable materials by using, for instance, hybrid dry cutting/hydrostatic burnishing.


Quantification And Subjective Perception Of Varying Reflection Densities In Measured Room Impulsed Responses, Hyun Hong, Lily M. Wang Jul 2015

Quantification And Subjective Perception Of Varying Reflection Densities In Measured Room Impulsed Responses, Hyun Hong, Lily M. Wang

Durham School of Architectural Engineering and Construction: Faculty Publications

This project focuses on quantifying and testing the subjective perception of reflection densities, or the number of reflections per second, from different room impulse responses. The widely used room acoustic metric, reverberation time, is linked to the perceived reverberation in a room. Two different rooms having the same reverberation time, though, can have different reflection densities in their room impulse responses, and this difference in reflection density may affect how listeners perceive spatial impression in rooms. To investigate how sensitive humans are to a change of reflection density, this paper first reviews assorted parameters for quantifying reflection density from measured …


Room Acoustic Effects On Speech Comprehension Of English-As-Second-Language Talkers And Listeners Versus Native-English-Speaking Talkers And Listeners, Lily M. Wang Jul 2015

Room Acoustic Effects On Speech Comprehension Of English-As-Second-Language Talkers And Listeners Versus Native-English-Speaking Talkers And Listeners, Lily M. Wang

Durham School of Architectural Engineering and Construction: Faculty Publications

Approximately 21% of the children in the United States school system speak a language other than English at home, but are being taught in English at school. English is additionally being used more and more often as a common language in international settings, even though participants at these international events again are not native English speakers. How do adverse room acoustic environments, including higher background noise levels and longer reverberation times, impact English-as-a-Second-Language (ESL) talkers and listeners versus native English-speaking talkers and listeners? This presentation focuses on two recent studies at the University of Nebraska that investigate how assorted room …


Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth For Efficient Hybrid Perovskite Solar Cells, Cheng Bi, Qi Wang, Yongbo Yuan, Zhengguo Xiao, Jinsong Huang Jun 2015

Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth For Efficient Hybrid Perovskite Solar Cells, Cheng Bi, Qi Wang, Yongbo Yuan, Zhengguo Xiao, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in …


Controller Area Network (Can) Bus J1939 Data Acquisition Methods And Parameter Accuracy Assessment Using Nebraska Tractor Test Laboratory Data, Samuel E. Marx May 2015

Controller Area Network (Can) Bus J1939 Data Acquisition Methods And Parameter Accuracy Assessment Using Nebraska Tractor Test Laboratory Data, Samuel E. Marx

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Electronics have become a standard in agricultural equipment and the trend of “smarter” equipment is on the rise. To have “smarter” equipment, a working knowledge of the accuracy of the data being transmitted throughout that equipment is needed. The controller area network (CAN) bus is the current interface to machine operation data transmitted between electronic control units (ECUs).

Because CAN bus has been around for nearly thirty years, numerous devices have been created for interfacing with the bus. Choosing a device can be a challenge, especially without knowing if there are differences between the logging methods for true data representation. …


Using Controlled Curing In A Custom Stereolithography-Based 3d Printing Machine To Obtain Graded Property Variations, Evan S. Schwahn May 2015

Using Controlled Curing In A Custom Stereolithography-Based 3d Printing Machine To Obtain Graded Property Variations, Evan S. Schwahn

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In an effort to construct materially graded parts, a strategy was studied that is based on varying ratios of interpenetrating polymer networks (IPNs) in a manner that can be adapted to 3D printing. Using IPNs has the benefit of allowing access to a broad range of property variation. The strategy used involves controlled partial curing of the first network, followed by washing of that network to remove uncured components, then swelling of the structure with a second polymer component and curing.

This method was utilized to control final IPN properties by controlling the extent of crosslinking of the initial network, …


Conceptual Development Of An Impact-Attenuation System For Intersecting Roadways, Joseph G. Putjenter Apr 2015

Conceptual Development Of An Impact-Attenuation System For Intersecting Roadways, Joseph G. Putjenter

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Longitudinal barriers are commonly used to shield hazards, including stiff bridge rail ends and slopes. In some locations, a secondary roadway intersects the primary roadway within the guardrail’s length-of-need (LON). Some intersections have as little as 15 ft (4.6 m) between the intersection and beginning of the bridge railing, which require short-radius guardrail systems. No short-radius systems have been tested and approved to current impact safety standards for shielding hazards with these conditions.

Site conditions provided by the Nebraska Department of Roads were used to determine the constraints for a new safety treatment for intersecting roadways and include intersection radii, …


Local Control Robotic Surgical Devices And Related Methods, Eric Markvicka, Tom Frederick, Jack Mondry, Joe Bartels, Shane Farritor Apr 2015

Local Control Robotic Surgical Devices And Related Methods, Eric Markvicka, Tom Frederick, Jack Mondry, Joe Bartels, Shane Farritor

Department of Mechanical and Materials Engineering: Faculty Publications

The various robotic medical devices include robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Additional embodiments relate to devices having arms coupled to a device body wherein the device has a minimal profile such that the device can be easily inserted through smaller incisions in comparison to other devices without such a small profile. Further embodiments relate to methods of operating the above devices.


Methods And Systems For Handling Or Delivering Materials For Natural Orifice Surgery, Carl Nelson, Jeff Midday, Dimitry Oleynikov, Alan Goyzueta Mar 2015

Methods And Systems For Handling Or Delivering Materials For Natural Orifice Surgery, Carl Nelson, Jeff Midday, Dimitry Oleynikov, Alan Goyzueta

Department of Mechanical and Materials Engineering: Faculty Publications

The embodiments disclosed herein relate to various medical systems, including systems that can be used in conjunction with medical devices used in endoscopic surgery. Certain embodiments include various material handling devices that can transport materials between the inside and the outside of an endoscopic surgery patient.


Development And Preliminary Evaluation Of A Spray Deposition Sensing System For Improving Pesticide Application, Melissa A. Kesterson, Joe D. Luck, Michael P. Sama Jan 2015

Development And Preliminary Evaluation Of A Spray Deposition Sensing System For Improving Pesticide Application, Melissa A. Kesterson, Joe D. Luck, Michael P. Sama

Department of Mechanical and Materials Engineering: Faculty Publications

An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface …


Enhanced Pool-Boiling Heat Transfer And Critical Heat Flux On Femtosecond Laser Processed Stainless Steel Surfaces, Cory M. Kruse, Troy Anderson, Chris Wilson, Craig Zuhlke, Dennis Alexander, George Gogos, Sidy Ndao Jan 2015

Enhanced Pool-Boiling Heat Transfer And Critical Heat Flux On Femtosecond Laser Processed Stainless Steel Surfaces, Cory M. Kruse, Troy Anderson, Chris Wilson, Craig Zuhlke, Dennis Alexander, George Gogos, Sidy Ndao

Department of Mechanical and Materials Engineering: Faculty Publications

In this paper, we present an experimental investigation of pool boiling heat transfer on multiscale (micro/nano) functionalized metallic surfaces. Heat transfer enhancement in metallic surfaces is very important for large scale high heat flux applications like in the nuclear power industry. The multiscale structures were fabricated via a femtosecond laser surface process (FLSP) technique, which forms self-organized mound-like microstructures covered by layers of nanoparticles. Using a pool boiling experimental setup with deionized water as the working fluid, both the heat transfer coefficients and critical heat flux were investigated. A polished reference sample was found to have a critical heat flux …


Quantification Of Plaque Stiffness By Brillouin Microscopy In Experimental Thin Cap Fibroatheroma, Giuseppe Antonacci, Ryan M. Pedrigi, Avinash Kondiboyina, Vikram V. Mehta, Ranil De Silva, Carl Paterson, Rob Krams, Peter Torok Jan 2015

Quantification Of Plaque Stiffness By Brillouin Microscopy In Experimental Thin Cap Fibroatheroma, Giuseppe Antonacci, Ryan M. Pedrigi, Avinash Kondiboyina, Vikram V. Mehta, Ranil De Silva, Carl Paterson, Rob Krams, Peter Torok

Department of Mechanical and Materials Engineering: Faculty Publications

Plaques vulnerable to rupture are characterized by a thin and stiff fibrous cap overlaying a soft lipid-rich necrotic core. The ability to measure local plaque stiffness directly to quantify plaque stress and predict rupture potential would be very attractive, but no current technology does so. This study seeks to validate the use of Brillouin microscopy to measure the Brillouin frequency shift, which is related to stiffness, within vulnerable plaques. The left carotid artery of an ApoE-/- mouse was instrumented with a cuff that induced vulnerable plaque development in nine weeks. Adjacent histological sections from the instrumented and control arteries …


Quantification Of Ultraprecision Surface Morphology Using An Algebraic Graph Theoretic Approach, Prahalad Rao, Satish T. S. Bukkapatnam, Zhenyu (James) Kong, Omer F. Beyca, Kenneth Case, Ranga Komanduri Jan 2015

Quantification Of Ultraprecision Surface Morphology Using An Algebraic Graph Theoretic Approach, Prahalad Rao, Satish T. S. Bukkapatnam, Zhenyu (James) Kong, Omer F. Beyca, Kenneth Case, Ranga Komanduri

Department of Mechanical and Materials Engineering: Faculty Publications

Assessment of progressive, nano-scale variation of surface morphology during ultraprecision manufacturing processes, such as fine-abrasive polishing of semiconductor wafers, is a challenging proposition owing to limitations with traditional surface quantifiers. We present an algebraic graph theoretic approach that uses graph topological invariants for quantification of ultraprecision surface morphology. The graph theoretic approach captures heterogeneous multi-scaled aspects of surface morphology from optical micrographs, and is therefore valuable for in situ real-time assessment of surface quality. Extensive experimental investigations with specular finished (Sa ~ 5 nm) blanket copper wafers from a chemical mechanical planarization (CMP) process suggest that the proposed method was …


Asphalt Composition, David Allen, Flavio Souza, Yong-Rak Kim, Roberto Soares Jan 2015

Asphalt Composition, David Allen, Flavio Souza, Yong-Rak Kim, Roberto Soares

Department of Mechanical and Materials Engineering: Faculty Publications

A computational method is provided for predicting roadway failure due to degradation of the roadway over time as a function of the input loads, the roadway geometry, the material properties of the constituents in the asphaltic pavement, the shape, distribution, orientation and volume fractions of the constituents, and environmental conditions. The unique and new feature of the method is that it employs several physically based predictive methodologies simultaneously.


Voigt, Reuss, Hill, And Self-Consistent Techniques For Modeling Ultrasonic Scattering, Christopher M. Kube, Joseph A. Turner Jan 2015

Voigt, Reuss, Hill, And Self-Consistent Techniques For Modeling Ultrasonic Scattering, Christopher M. Kube, Joseph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

An elastic wave propagating in a metal loses a portion of its energy from scattering caused by acoustic impedance differences existing at the boundaries of anisotropic grains. Theoretical scattering models capture this phenomena by assuming the incoming wave is described by an average elastic moduli tensorC0ijkl (x) that is perturbed by a grain with elasticityCijkl (x ') where the scattering event occurs when x = x. Previous models have assumed that C0ijkl (x) is the Voigt average of the singlecrystal elastic moduli tensor. However, this assumption …


Acoustic Nonlinearity Parameters For Transversely Isotropic Polycrystalline Materials, Christopher M. Kube, Joseph A. Turner Jan 2015

Acoustic Nonlinearity Parameters For Transversely Isotropic Polycrystalline Materials, Christopher M. Kube, Joseph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

This article considers polycrystalline materials with macroscopic elastic anisotropy and the effect of the anisotropy on the quadratic nonlinearity parameter used to describe second harmonic generation in solids. The polycrystal is assumed to have transversely isotropic elastic symmetry, which leads to a directional dependence of the nonlinearity parameters. Additionally, the anisotropy leads to second harmonic generation from an input shear wave. Estimates of the longitudinal and shear wave nonlinearity parameters are given as a function of single-crystal elastic constants, macroscopic anisotropy constants, and propagation direction. An inverse model is presented that relates measured nonlinearity parameters to the macroscopic anisotropy constants. …


Acoustic Attenuation Coefficients For Polycrystalline Materials Containing Crystallites Of Any Symmetry Class, Christopher M. Kube, Joesph A. Turner Jan 2015

Acoustic Attenuation Coefficients For Polycrystalline Materials Containing Crystallites Of Any Symmetry Class, Christopher M. Kube, Joesph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

This letter provides a theoretical extension to the elastic properties of polycrystals in order to describe elastic wave scattering from grain boundaries. The extension allows the longitudinal and shear attenuation coefficients for scattering to be derived and is valid for polycrystals containing crystallites of any symmetry class. Attenuation curves are given for polycrystalline SiO2, ZrO2, and SnF2, which contain monoclinic crystallites. This work will allow ultrasonic techniques to be applied to new classes of materials containing nontrivial microstructures.


Interfacial Electronic Structure At The Ch3nh3pbi3/Moox Interface, Peng Liu, Xiaoliang Liu, Lu Lyu, Haipeng Xie, Hong Zhang, Dongmei Niu, Han Huang, Cheng Bi, Zhengguo Xiao, Jinsong Huang, Yongli Gao Jan 2015

Interfacial Electronic Structure At The Ch3nh3pbi3/Moox Interface, Peng Liu, Xiaoliang Liu, Lu Lyu, Haipeng Xie, Hong Zhang, Dongmei Niu, Han Huang, Cheng Bi, Zhengguo Xiao, Jinsong Huang, Yongli Gao

Department of Mechanical and Materials Engineering: Faculty Publications

Interfacial electronic properties of the CH3NH3PbI3 (MAPbI3)/MoOx interface are investigated using ultraviolet photoemission spectroscopy and X-ray photoemission spectroscopy. It is found that the pristine MAPbI3 film coated onto the substrate of poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate)/indium tin oxide by two-step method behaves as an n-type semiconductor, with a band gap of ~1.7 eV and a valence band edge of 1.40 eV below the Fermi energy (EF). With the MoOx deposition of 64A ° upon MAPbI3, the energy levels of MAPbI3 shift toward higher binding energy by 0.25 eV due to electron transfer …


The Operation Mechanism Of Poly(9,9-Dioctylfluorenyl-2,7-Diyl) Dots In High Efficiency Polymer Solar Cells, Chunyu Liu, Yeyuan He, Xinyuan Zhang, Zhiqi Li, Liang Shen, Zhihui Zhang, Wenbin Guo, Shengping Ruan Jan 2015

The Operation Mechanism Of Poly(9,9-Dioctylfluorenyl-2,7-Diyl) Dots In High Efficiency Polymer Solar Cells, Chunyu Liu, Yeyuan He, Xinyuan Zhang, Zhiqi Li, Liang Shen, Zhihui Zhang, Wenbin Guo, Shengping Ruan

Department of Mechanical and Materials Engineering: Faculty Publications

The highly efficient polymer solar cells were realized by doping poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) dots into active layer. The dependence of doping amount on devices performance was investigated and a high efficiency of 7.15% was obtained at an optimal concentration, accounting for a 22.4% enhancement. The incorporation of PFO dots (Pdots) is conducted to the improvement of Jsc and fill factor mainly due to the enhancement of light absorption and charge transport property. Pdots blended in active layer provides an interface for charge transfer and enables the formation of percolation pathways for electron transport. The introduction of Pdots was proven an effective …


Phase Transformation And Magnetic Properties Of Rapidly Solidified Mn-Al-C Alloys Modified With Zr, Yunlong Geng, Micheal J. Lucis, Pamela Rasmussen, Jeffrey E. Shield Jan 2015

Phase Transformation And Magnetic Properties Of Rapidly Solidified Mn-Al-C Alloys Modified With Zr, Yunlong Geng, Micheal J. Lucis, Pamela Rasmussen, Jeffrey E. Shield

Department of Mechanical and Materials Engineering: Faculty Publications

Mn54-xAl43C3Zrx (x=1, 3) alloys were prepared by rapid solidification followed by heat treatment to produce the ferromagnetic s phase. The substitution of Zr for Mn in the structure resulted in an increase of the saturation magnetization (Ms) compared to that of Mn54-xAl43C3. While the highest Ms (12861 emu/g) was obtained in Mn54-xAl43C3Zr1, the coercivity was also improved to 1.62 kOe, compared to 1.25 kOe for Mn54-xAl43C3. To further improve the coercivity through grain …