Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 79

Full-Text Articles in Mechanical Engineering

Kinematic Analysis Of Gait And Deep Knee Flexion For Pre- And Post-Operative Total Knee Arthroplasty, Samantha Collins Nov 2023

Kinematic Analysis Of Gait And Deep Knee Flexion For Pre- And Post-Operative Total Knee Arthroplasty, Samantha Collins

Electronic Theses and Dissertations

Osteoarthritis (OA) is a form of arthritis that develops in the joint due to overuse and aging causing pain, discomfort, and disability. Total Knee Arthroplasty (TKA) is a surgical procedure performed when OA symptoms are severe with an estimated 600,000 patients in the United States currently receiving TKA. Studies have reported dissatisfaction of the knee for 14-39% of patients. This study collected knee kinematics before and after surgery using stereo radiography for precise measurement of gait and deep knee flexion activities. Results showed healthy knee kinematics were not restored and no significant changes could be seen from OA kinematics in …


Exploration Of Motion Capture System To Investigate Human Shoulder Kinematics, Ola Alsaadi Nov 2023

Exploration Of Motion Capture System To Investigate Human Shoulder Kinematics, Ola Alsaadi

Electronic Theses and Dissertations

The glenohumeral joint (GH) is commonly conceptualized as a ball-and-socket joint [1], and its center of rotation (COR) is presumed to coincide with the geometric center of the medial-superior region of the humeral head [2]. Recent research has endorsed improvements in COR estimation through invasive and noninvasive techniques, including cadaver studies, stereophotogrammetry, and motion capture (MOCAP) systems. Despite increased interest in wearable technology within human movement analysis, the problem of COR estimation employing MOCAP systems and its validation against bi-planar fluoroscopy remains relatively unexplored.

This study employed a marker-based MOCAP system to compare the accuracy, error, and precision of three …


Quantifying Balance: Computational And Learning Frameworks For The Characterization Of Balance In Bipedal Systems, Kubra Akbas Aug 2023

Quantifying Balance: Computational And Learning Frameworks For The Characterization Of Balance In Bipedal Systems, Kubra Akbas

Dissertations

In clinical practice and general healthcare settings, the lack of reliable and objective balance and stability assessment metrics hinders the tracking of patient performance progression during rehabilitation; the assessment of bipedal balance plays a crucial role in understanding stability and falls in humans and other bipeds, while providing clinicians important information regarding rehabilitation outcomes. Bipedal balance has often been examined through kinematic or kinetic quantities, such as the Zero Moment Point and Center of Pressure; however, analyzing balance specifically through the body's Center of Mass (COM) state offers a holistic and easily comprehensible view of balance and stability.

Building upon …


Biomat (Biomechanics Multiactivity Transformer) Model, Mohsen Sharifi Renani Jul 2023

Biomat (Biomechanics Multiactivity Transformer) Model, Mohsen Sharifi Renani

BioMAT (Biomechanics Multiactivity Transformer)

No abstract provided.


Novel Approach For Non-Invasive Prediction Of Body Shape And Habitus, Emma Young Jun 2023

Novel Approach For Non-Invasive Prediction Of Body Shape And Habitus, Emma Young

Electronic Theses and Dissertations

While marker-based motion capture remains the gold standard in measuring human movement, accuracy is influenced by soft-tissue artifacts, particularly for subjects with high body mass index (BMI) where markers are not placed close to the underlying bone. Obesity influences joint loads and motion patterns, and BMI may not be sufficient to capture the distribution of a subject’s weight or to differentiate differences between subjects. Subjects in need of a joint replacement are more likely to have mobility issues or pain, which prevents exercise. Obesity also increases the likelihood of needing a total joint replacement. Accurate movement data for subjects with …


Du Undergraduate Showcase: Research, Scholarship, And Creative Works, Caitlyn Aldersea, Justin Bravo, Sam Allen, Anna Block, Connor Block, Emma Buechler, Maria De Los Angeles Bustillos, Arianna Carlson, William Christensen, Olivia Kachulis, Noah Craver, Kate Dillon, Muskan Fatima, Angel Fernandes, Emma Finch, Colleen Cassidy, Amy Fishman, Andrea Francis, Stacia Fritz, Simran Gill, Emma Gries, Rylie Hansen, Shannon Powers, Jacqueline Martinez, Zachary Harker, Ashley Hasty, Mykaela Tanino-Springsteen, Kathleen Hopps, Adelaide Kerenick, Colin Kleckner, Ci Koehring, Elijah Kruger, Braden Krumholz, Maddie Leake, Lyneé Alves, Seraphina Loukas, Yatzari Lozano Vazquez, Haley Maki, Emily Martinez, Sierra Mckinney, Mykaela Tanino-Springsteen, Audrey Mitchell, Kipling Newman, Audrey Ng, Megan Lucyshyn, Andrew Nguyen, Stevie Ostman, Casandra Pearson, Alexandra Penney, Julia Gielczynski, Tyler Ball, Anna Rini, Christina Rorres, Simon Ruland, Helayna Schafer, Emma Sellers, Sarah Schuller, Claire Shaver, Kevin Summers, Isabella Shaw, Madison Sinar, Claudia Pena, Apshara Siwakoti, Carter Sorensen, Madi Sousa, Anna Sparling, Alexandra Revier, Brandon Thierry, Dylan Tyree, Maggie Williams, Lauren Wols May 2023

Du Undergraduate Showcase: Research, Scholarship, And Creative Works, Caitlyn Aldersea, Justin Bravo, Sam Allen, Anna Block, Connor Block, Emma Buechler, Maria De Los Angeles Bustillos, Arianna Carlson, William Christensen, Olivia Kachulis, Noah Craver, Kate Dillon, Muskan Fatima, Angel Fernandes, Emma Finch, Colleen Cassidy, Amy Fishman, Andrea Francis, Stacia Fritz, Simran Gill, Emma Gries, Rylie Hansen, Shannon Powers, Jacqueline Martinez, Zachary Harker, Ashley Hasty, Mykaela Tanino-Springsteen, Kathleen Hopps, Adelaide Kerenick, Colin Kleckner, Ci Koehring, Elijah Kruger, Braden Krumholz, Maddie Leake, Lyneé Alves, Seraphina Loukas, Yatzari Lozano Vazquez, Haley Maki, Emily Martinez, Sierra Mckinney, Mykaela Tanino-Springsteen, Audrey Mitchell, Kipling Newman, Audrey Ng, Megan Lucyshyn, Andrew Nguyen, Stevie Ostman, Casandra Pearson, Alexandra Penney, Julia Gielczynski, Tyler Ball, Anna Rini, Christina Rorres, Simon Ruland, Helayna Schafer, Emma Sellers, Sarah Schuller, Claire Shaver, Kevin Summers, Isabella Shaw, Madison Sinar, Claudia Pena, Apshara Siwakoti, Carter Sorensen, Madi Sousa, Anna Sparling, Alexandra Revier, Brandon Thierry, Dylan Tyree, Maggie Williams, Lauren Wols

DU Undergraduate Research Journal Archive

DU Undergraduate Showcase: Research, Scholarship, and Creative Works


Modeling, Analysis, And Simulation To Reveal The Mechanisms Of Ciliary Beating, Louis Woodhams Aug 2022

Modeling, Analysis, And Simulation To Reveal The Mechanisms Of Ciliary Beating, Louis Woodhams

McKelvey School of Engineering Theses & Dissertations

Cilia are microscopic cellular appendages that help us breathe by clearing our airways, maintain the health of our central nervous system by circulating cerebrospinal fluid, and allow us to reproduce by transporting eggs and propelling sperm cells. Cilia even determine the asymmetry of our internal organs during embryonic development. However, the mechanisms underlying ciliary beating are not fully understood. Questions remain as to how arrays of the motor protein dynein generate the propulsive waveforms observed in cilia and how structural elements within the cilium and its connection to the cell deform during beating. In the current work, mathematical modeling, analysis, …


Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons May 2022

Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons

Theses and Dissertations

Fatigue testing of stretch sensors often focuses on high amplitude, low-cycle fatigue (LCF) behavior; however, when used for orthopaedic, athletic, or ergonomic assessments, stretch sensors are subjected to low amplitude, high-cycle fatigue (HCF) conditions. As an added layer of complexity, the fatigue testing of stretch sensors is not only focused on the life of the material comprising the sensor, but also on the reliability of the signal produced during the extension and relaxation of the sensor. Research into the development of a smart sock that can be used to measure the range of motion (ROM) of the ankle joint during …


Predicting The Progression Of Diabetes Mellitus Using Dynamic Plantar Pressure Parameters, Mathew Sunil Varre May 2022

Predicting The Progression Of Diabetes Mellitus Using Dynamic Plantar Pressure Parameters, Mathew Sunil Varre

UNLV Theses, Dissertations, Professional Papers, and Capstones

Introduction: Diabetic peripheral neuropathy is one of the common complications of type-2 diabetes mellitus (DM). Changes in the intrinsic plantar tissue coupled with repetitive mechanical loads and loss of sensation may lead to foot related complications (skin break down, ulcerations, and amputations) in persons with neuropathy if left untreated. The purpose of this dissertation was to stratify individuals with pre-diabetes, diabetes with and without neuropathy using dynamic plantar pressure parameters during walking, using machine learning algorithms.Methods: Plantar pressure data was collected from one hundred participants during walking with pressure measuring insoles fixed between the feet and thin socks. Simultaneously high-definition …


The Optimal Relationship Between Actuator Stiffness And Actuation Timing For A Passive Ankle Exoskeleton: An Opensim Simulation, Cody Anderson, Hafizur Rahman, Sara Myers Mar 2022

The Optimal Relationship Between Actuator Stiffness And Actuation Timing For A Passive Ankle Exoskeleton: An Opensim Simulation, Cody Anderson, Hafizur Rahman, Sara Myers

UNO Student Research and Creative Activity Fair

Introduction

The passive ankle exoskeleton developed by Collins et al. (2015) reduced the metabolic cost of walking with an actuation-timing of ~16% of stance [1]; however, other actuation timings have not been extensively investigated. Therefore, the purpose of this study was to determine the optimal relationship between actuator-stiffness and actuation-timing for a passive ankle exoskeleton by using musculoskeletal modeling.

Methods

Kinematics and ground reaction forces were recorded while a healthy-young male walked on overground force-plates, and these data were exported to a musculoskeletal modeling software (OpenSim) for simulation. A passive ankle exoskeleton model was designed and integrated with a default …


Exploration Of Warm-Up Protocols On Muscular Fatigue, Sahil Kapadia Jan 2022

Exploration Of Warm-Up Protocols On Muscular Fatigue, Sahil Kapadia

Honors Undergraduate Theses

Muscular dystrophy is a genetically linked myopathy with no cure available. The lack of a cure makes early detection and treatment of muscular dystrophy imperative. When reviewing protocols examining muscular fatigue at submaximal isometric contractions, proper warm-up appeared to be absent and could have caused skewed results and conclusions. This study examines the effects of implementing a warm-up protocol before fatiguing trials. In this study, 10 adult subjects conducted fatiguing protocols with the right rectus at submaximal isometric contractions. The warm-up period included a light walk along with contractions at 20% and 33% of maximal voluntary isometric contraction (MVIC) levels. …


Study Protocol To Analyze The Effects Of Posture And Exoskeleton On Human Exposure To Hand-Transmitted Vibration, Parisa Torkinejad Ziarati Jan 2022

Study Protocol To Analyze The Effects Of Posture And Exoskeleton On Human Exposure To Hand-Transmitted Vibration, Parisa Torkinejad Ziarati

Graduate Research Theses & Dissertations

Exposure to power hand tool-generated vibrations may lead to several health disorders collectively known as hand-arm vibration (HAV) syndromes. Power hand tools are often used in overhead postures in the manufacturing and construction industries. However, HAV risks are examined in the front-of-body posture in the existing safety standards and guidelines. Therefore, it is important to understand the effects of overhead working posture on vibration transmissibility (VT) in the upper extremities (UEs) and the spine. Secondly, there is a rising trend of using occupational exoskeletons (Exos) in the manufacturing and construction industries, especially involving overhead work with power hand tools. However, …


Defining The Role Of Elastic Fibers In Tendon Mechanics, Jeremy D. Eekhoff Dec 2021

Defining The Role Of Elastic Fibers In Tendon Mechanics, Jeremy D. Eekhoff

McKelvey School of Engineering Theses & Dissertations

Tendons serve as a linking component of the musculoskeletal system by transferring forces between muscle and bone. As such, the structural proteins of the tendon extracellular matrix are of vital importance for the tissue to function properly and maintain its mechanical integrity. Collagen is the principal constituent of tendon and makes up its aligned hierarchical organization. Other structural proteins, such as elastin, are in comparison understudied and not well understood in relation to tendon function. Elastin, the main component of elastic fibers, has unique mechanical properties including high extensibility, fatigue resistance, and elasticity; these properties are important for elastin-rich tissues …


Use Of Pressure-Measuring Insoles To Characterize Gait Parameters In Simulated Reduced-Gravity Conditions, Christian Ison, Connor Neilsen, Jessica Deberardinis, Mohamed B. Trabia, Janet S. Dufek Sep 2021

Use Of Pressure-Measuring Insoles To Characterize Gait Parameters In Simulated Reduced-Gravity Conditions, Christian Ison, Connor Neilsen, Jessica Deberardinis, Mohamed B. Trabia, Janet S. Dufek

Mechanical Engineering Faculty Research

Prior researchers have observed the effect of simulated reduced-gravity exercise. However, the extent to which lower-body positive-pressure treadmill (LBPPT) walking alters kinematic gait characteristics is not well understood. The purpose of the study was to investigate the effect of LBPPT walking on selected gait parameters in simulated reduced-gravity conditions. Twenty-nine college-aged volunteers participated in this cross-sectional study. Participants wore pressure-measuring insoles (Medilogic GmBH, Schönefeld, Germany) and completed three 3.5-min walking trials on the LBPPT (AlterG, Inc., Fremont, CA, USA) at 100% (normal gravity) as well as reduced-gravity conditions of 40% and 20% body weight (BW). The resulting insole data were …


Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani Aug 2021

Development Of A Novel Haptic Feedback System For Gait Training Applications, Mohsen Alizadeh Noghani

Electronic Theses and Dissertations

Until recently, study and correction of motor or gait functions required costly sensors and measurement setups (e.g., optical motion capture systems) which were only available in laboratories or clinical environments. However, due to (1) the growing availability and affordability of inertial measurement units (IMUs) with high accuracy, and (2) progress in wireless, high bandwidth, and energy-efficient networking technologies such as Bluetooth Low Energy (BLE), it is now possible to measure and provide feedback in real-time for biomechanical parameters outside of those specialized settings. To enable gait training without an expert who can provide verbal feedback, augmented feedback, which is divided …


Subject-Specific Musculoskeletal Modeling Of Hip Dysplasia Biomechanics, Ke Song May 2021

Subject-Specific Musculoskeletal Modeling Of Hip Dysplasia Biomechanics, Ke Song

McKelvey School of Engineering Theses & Dissertations

Developmental dysplasia of the hip (DDH) is characterized by abnormal bony anatomy, causes pain and functional limitations, and is a prominent risk factor for premature hip osteoarthritis. Although the pathology of DDH is believed to be mechanically-induced, little is known about how DDH anatomy alters hip biomechanics during activities of daily living, partly due to the difficulties with measuring hip muscle and joint forces. Musculoskeletal models (MSMs) are useful for dynamic simulations of joint mechanics, but the reliability of MSMs for DDH research is limited by an accurate model representation of the unique hip anatomy. To address such challenges, this …


Patient-Specific Finite Element Analysis For Mandibular Fracture Fixation, Ethan Snyder May 2021

Patient-Specific Finite Element Analysis For Mandibular Fracture Fixation, Ethan Snyder

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis proposes an approach for Finite Element Analysis (FEA) of mandibular fracture fixation. Using a Computerized Tomography (CT) scan of mandible obtained from a specific person, the material characteristics, density and modulus of elasticity, were determined from a set of discrete points within the mandible that are 1mm spaced based on the Hounsfield Units of these points. The mandible geometry was sectioned to simulate a fracture. Muscle and mastication forces were added to replicate post-surgery loading. Using a standard linear miniplate, this material model was compared with two commonly used mandibular cortical shell bone models: isotropic and orthotropic. A …


Foot Contact Dynamics And Fall Risk Among Children Diagnosed With Idiopathic Toe Walking, Rahul Soangra, Michael Shiraishi, Richard Beuttler, Michelle Gwerder, Lou Anne Boyd, Venkatesan Muthukumar, Mohamed Trabia, Afshin Aminian, Marybeth Grant-Beuttler Mar 2021

Foot Contact Dynamics And Fall Risk Among Children Diagnosed With Idiopathic Toe Walking, Rahul Soangra, Michael Shiraishi, Richard Beuttler, Michelle Gwerder, Lou Anne Boyd, Venkatesan Muthukumar, Mohamed Trabia, Afshin Aminian, Marybeth Grant-Beuttler

Electrical & Computer Engineering Faculty Research

Children that are diagnosed with Idiopathic Toe walking (cITW) are characterized by persistent toe-to-toe contacts. The objective of this study was to explore whether typical foot contact dynamics during walking predisposes cITW to a higher risk of falling. Twenty cITW and age-matched controls performed typical and toe walking trials. The gait parameters related to foot contact dynamics, vertical force impulses during stance, slip, and trip risk were compared for both groups. We found that cITW manifest less stable gait and produced significantly higher force impulses during push-off. Additionally, we found that cITW had a higher slip-initiation risk that was associated …


Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang Jan 2021

Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang

Electronic Theses and Dissertations

Cemented and cementless fixation in total knee arthroplasty (TKA) have been successfully used for decades. As the number of younger and more active patients treated with TKA continues to increase, long-term implant survivorship is of increasing importance. One of the most common complications and hence the reason for revision is mechanical loosening (23.1% of all revised TKA). The loosening mechanisms have been proposed for different fixation types. For cemented fixation, bone remodeling after surgery is regulated by the changes in strain energy density (SED). The recruitment of osteoclasts and osteoblasts is controlled by SED-related signals. Insufficient stimuli can promote bone …


Broadening The Capability Of Kinetics Analysis In Biomechanics, Nicholas Nelson Jan 2021

Broadening The Capability Of Kinetics Analysis In Biomechanics, Nicholas Nelson

Electronic Theses and Dissertations

Two studies are discussed in this manuscript each preceded by a literature review of the topic. The first review and study explore agility movements and the effect that alternative upper designs in shoes might have on ground reaction force measures of performance. The second review and study evaluate methods of predicting ground reaction forces without the use of a force platform. A method of using effective forces and ways of improving its accuracy are evaluated in depth.


Swimming Of Pelagic Snails: Kinematics And Fluid Dynamics, Ferhat Karakas Oct 2020

Swimming Of Pelagic Snails: Kinematics And Fluid Dynamics, Ferhat Karakas

USF Tampa Graduate Theses and Dissertations

Pteropods (also known as sea butterflies or sea angels), are holoplanktonic marine snails which swim by flapping a pair of extremely flexible wings. The wings are modified from the molluscan foot and the wing motions are supported by the fluid pressure without any rigid support. Sea angels (gymnosome pteropods) are completely naked; in contrast, sea butterflies (thecosome pteropods) have negatively buoyant aragonite shells which vary in geometry and size among different species. Pteropods are seasonally abundant in the ocean, and an important food source for the other zooplanktons, fishes, and whales. Though studies have been conducted regarding their biology, ecology, …


Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii Jan 2020

Atv Dynamics And Pediatric Rider Safety, James T. Auxier Ii

Theses and Dissertations--Biomedical Engineering

It has been observed through numerous academic and governmental agency studies that pediatric all-terrain vehicle ridership carries significant risk of injury and death. While no doubt valuable to safety, the post-hoc approach employed in these studies does little to explain the why and how behind the risk factors. Furthermore, there has been no prolonged, widespread, organized, and concerted effort to reconstruct and catalog the details and causes of the large (20,000+) number of ATV-related injuries that occur each year as has been done for road-based motor vehicle accidents. This dissertation takes the opposite approach from a meta-analysis and instead examines …


Tracking Center Of Mass With Limited Inertial Measurement Units, Connor Nathaniel Morrow Sep 2019

Tracking Center Of Mass With Limited Inertial Measurement Units, Connor Nathaniel Morrow

Dissertations and Theses

Wearable motion tracking systems pose an opportunity to study and correct human balance and posture during movement. Currently, these observations are either being conducted in laboratories with the use of camera systems and markers placed on the body, or through the use of suits containing large numbers (15-20) of inertial measurement units. However, to aid with rehabilitation of individuals with impaired balance, there needs to be an option to collect these observations outside of clinics and without incurring much cost from the user. I have focused on three inertial measurement units, one placed on each shank and one placed on …


Development And Application Of New Methods For Magnetic Resonance Elastography Of The Brain, Charlotte Anne Guertler Aug 2019

Development And Application Of New Methods For Magnetic Resonance Elastography Of The Brain, Charlotte Anne Guertler

McKelvey School of Engineering Theses & Dissertations

Accurate mechanical properties of the intact, living brain are essential for modeling traumatic brain injury (TBI). However, the properties of brain tissue in vivo have traditionally been measured in ex vivo samples. Magnetic resonance elastography (MRE) can be used to measure motion and estimate material properties of soft tissues in vivo, but MRE typically assumes tissue isotropy and homogeneity. The objective of this thesis is to improve MRE of soft tissue, like the brain, by developing and evaluating methods for in vivo estimation of heterogeneous, anisotropic properties. This was achieved through pursuit of the following aims: (1) quantifying the differences …


Estimation Of Arterial Wall Parameters Via Model-Based Analysis Of Noninvasively Measured Arterial Pulse Signals, Dan Wang Apr 2019

Estimation Of Arterial Wall Parameters Via Model-Based Analysis Of Noninvasively Measured Arterial Pulse Signals, Dan Wang

Mechanical & Aerospace Engineering Theses & Dissertations

This dissertation presents a model-based method for estimating arterial wall parameters from noninvasively measured arterial pulse signals via a microfluidic-based tactile sensor. The sensor entails a polydimethylsiloxane (PDMS) microstructure embedded with 5×1 transducer array built on Pyrex/Polyethylene terephthalate (PET) substrate. The arterial pulse causes a time-varying deflection on the top of the PDMS microstructure, which registers as a resistance change by the transducer at the site of the artery.

Owing to the time-harmonic nature of its radial motion, the arterial wall is modeled as a second-order dynamic system. By combining this dynamic model with a hemodynamic model of blood flow, …


Novel Algorithms For Merging Computational Fluid Dynamics And 4d Flow Mri, Ali Bakhshinejad Aug 2018

Novel Algorithms For Merging Computational Fluid Dynamics And 4d Flow Mri, Ali Bakhshinejad

Theses and Dissertations

Time-resolved three-dimensional spatial encoding combined with three-directional velocity-encoded phase contrast magnetic resonance imaging (termed as 4D flow MRI), can provide valuable information for diagnosis, treatment, and monitoring of vascular diseases. The accuracy of this technique, however, is limited by errors in flow estimation due to acquisition noise as well as systematic errors. Furthermore, available spatial resolution is limited to 1.5mm - 3mm and temporal resolution is limited to 30-40ms. This is often grossly inadequate to resolve flow details in small arteries, such as those in cerebral circulation. Recently, there have been efforts to address the limitations of the spatial and …


Design And Testing Of A Passive Prosthetic Ankle Foot Optimized To Mimic An Able-Bodied Gait, Millicent Schlafly Jun 2018

Design And Testing Of A Passive Prosthetic Ankle Foot Optimized To Mimic An Able-Bodied Gait, Millicent Schlafly

USF Tampa Graduate Theses and Dissertations

Currently there are nearly 2 million people living with limb loss in the United States [1]. Many of these individuals are either transtibial (below knee) or transfemoral (above knee) amputees and require an ankle-foot prosthesis for basic mobility. While there are an abundance of options available for individuals who require an ankle-foot prosthesis, these options fail to mimic an intact ankle when it comes to key evaluation criteria such as range of motion, push-off force, and roll over shape. The roll over shape is created by plotting the center of pressure during a step in a shank-based coordinate system. To …


Biomimetic Design And Construction Of A Bipedal Walking Robot, Alexander Gabriel Steele Jun 2018

Biomimetic Design And Construction Of A Bipedal Walking Robot, Alexander Gabriel Steele

Dissertations and Theses

Human balance and locomotion control is highly complex and not well understood. To understand how the nervous system controls balance and locomotion works, we test how the body responds to controlled perturbations, the results are analyzed, and control models are developed. However, to recreate this system of control there is a need for a robot with human-like kinematics. Unfortunately, such a robotic testbed does not exist despite the numerous applications such a design would have in mobile robotics, healthcare, and prosthetics.

This thesis presents a robotic testbed model of human lower legs. By using MRI and CT scans, I designed …


Exploring The Use Of 3d Scanning To Determine Whole-Body Volume While Wearing A Triathlon Wetsuit, Leland Barker, Diego Medoza, John A. Mercer Apr 2018

Exploring The Use Of 3d Scanning To Determine Whole-Body Volume While Wearing A Triathlon Wetsuit, Leland Barker, Diego Medoza, John A. Mercer

Kinesiology and Nutrition Sciences Faculty Publications

Background: Commercial 3 Dimension (3D) scanners are relatively new to anthropometry. The purpose of this study was to explore ability of using a 3D imaging instrument to measure body volume with and without wearing a wetsuit. Three experiments were conducted to achieve this purpose: (1) to determine if the 3D imaging instrument could accurately measure volume of static objects; (2) to determine the resolution of accuracy of measuring volume of static objects; and (3) to compare whole-body volume of wearing a wetsuit using 3D imaging as well as another body volume measure (air displacement technique). Methods: Three experiments were performed: …


Developing Motion Platform Dynamics For Studying Biomechanical Responses During Exercise For Human Spaceflight Applications, Kaitlin Lostroscio Mar 2018

Developing Motion Platform Dynamics For Studying Biomechanical Responses During Exercise For Human Spaceflight Applications, Kaitlin Lostroscio

USF Tampa Graduate Theses and Dissertations

In future human spaceflight missions, with prolonged exposure to microgravity, resistive and aerobic exercises will be countermeasures for bone loss, muscle loss, and decreased aerobic capacity. Two of the exercises of interest are squats and rowing. The cyclic forces produced during these exercises are at relatively low frequencies which are likely to excite structural resonances of space vehicles. Vibration Isolation Systems (VIS) are being designed to be paired with future exploration exercise devices in order to prevent these cyclic exercise forces from impacting the space vehicle. The VIS may be configured such that a platform supports the human and exercise …