Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

Numerical Design Of Steerable Guidewires, Onkar Prakash Salunkhe Jan 2022

Numerical Design Of Steerable Guidewires, Onkar Prakash Salunkhe

Dissertations, Master's Theses and Master's Reports

Biomedical devices are an integral part of the medical industry nowadays. With the increase in cases of heart disease, catheterization procedures are becoming more frequent. Small-scale actuators are needed for the guidance of small-scale catheters and guidewires to remote targets in the human body. Numerical modelling is needed to guide the experiments in developing such steerable devices and to optimize their design. Here, we designed small-scale steerable guidewires by first developing bending actuators and then assembling them with guidewires. The actuators use materials with strain response to electric potential in a very low voltage range that is not harmful to …


Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop Jan 2019

Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop

Dissertations, Master's Theses and Master's Reports

The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network …


Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro Jan 2019

Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable …


A 3d Fem Comparative Study On The Impact Response Between Human Head And Nocsae Head Due To Free Fall, Amey S. Badhe Jan 2017

A 3d Fem Comparative Study On The Impact Response Between Human Head And Nocsae Head Due To Free Fall, Amey S. Badhe

Dissertations, Master's Theses and Master's Reports

We all enjoy sports be it watching or playing. Concussion is well known topic when it comes sports related injuries. However, concussion and brain injury is not exclusive to sports and outdoor activities. Sometimes, even the impact due to slip and fall at small heights can cause serious damage to the head and brain. This report studies the response generated in the human head model and the commercially use dummy NOCSAE headform due to drop from height of 2, 3, 4 and 5 feet. Earlier studies have related brain kinetics and head kinematics to concussion and traumatic brain injury (TBI). …


Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro Jan 2017

Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

Active ankle prostheses controllers are demonstrating gaining smart features to improve the safety and comfort offor users. The perception of user intention to modulate the ankle dynamics is a well-known example of such feature. But not much work focused on the perception of the environment, nor how the environment should be included in the mechanical design and control of the prosthesisprostheses. The proposed work aims to improve the feasibility of integrate the environment perception integration intoto the prostheses controllersler, and to define the desired ankle dynamics, as mechanical impedance, duringof the human walk on different environmental settings. As a preliminary …


Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop Jan 2017

Using Lower Extremity Muscle Activations To Estimate Human Ankle Impedance In The External-Internal Direction, Lauren N. Knop

Dissertations, Master's Theses and Master's Reports

For millions of people, mobility has been afflicted by lower limb amputation. Lower extremity prostheses have been used to improve the mobility of an amputee; however, they often require additional compensation from other joints and do not allow for natural maneuverability. To improve upon the functionality of ankle-foot prostheses, it is necessary to understand the role of different muscle activations in the modulation of mechanical impedance of a healthy human ankle. This report presents the results of using artificial neural networks (ANN) to determine the functional relationship between lower extremity electromyography (EMG) signals and ankle impedance in the transverse plane. …


Simulation Of Human Ankle Trajectory During Stance Phase Of Gait, Leslie Castelino Jan 2017

Simulation Of Human Ankle Trajectory During Stance Phase Of Gait, Leslie Castelino

Dissertations, Master's Theses and Master's Reports

A simulation was developed which mimics the human gait characteristics based on the input of an individual’s gait trajectory. This simulation also estimates the impedance of the human ankle based on the ground reaction forces measured by the force plate. This simulation will accept alterations of the following parameters: total body weight, weight of the shank, weight of the foot, trajectories of the shank and foot of the individual and orientation of the force plate, which would generate a new gait trajectory for the ankle during the stance phase of gait. The goal of this simulation was to validate the …


A Nocsae Drop Test/ 3d-Fem Study On The Relationship Between Kinematic Response Of The Head, Head Impact Contact Pressure (Hicp) And Kinetic Response Of The Brain To Delineate The Risk Of Traumatic Brain Injuries (Tbi)., Raghavendra Krishna Tej Bhamidipati Jan 2016

A Nocsae Drop Test/ 3d-Fem Study On The Relationship Between Kinematic Response Of The Head, Head Impact Contact Pressure (Hicp) And Kinetic Response Of The Brain To Delineate The Risk Of Traumatic Brain Injuries (Tbi)., Raghavendra Krishna Tej Bhamidipati

Dissertations, Master's Theses and Master's Reports

How many times have you seen a person slip and fall down and had a good laugh about it? How many times we slip and fall down on the floor and got up and walked away thinking everything is normal? Probably we might wonder “Are drops which occur at a small height dangerous?” Yes, they can be. Brain injuries are main reason for the fatality in youth [1], and low level falls are one of the most neglected and understated injuries.

The main objective of this study is to study the response of the brain for low level falls from …


Finite Element Modeling Of Active And Passive Behavior Of The Human Tibialis Anterior: A Preliminary Approach, David Joda Jan 2016

Finite Element Modeling Of Active And Passive Behavior Of The Human Tibialis Anterior: A Preliminary Approach, David Joda

Dissertations, Master's Theses and Master's Reports

This research project serves as exploratory work in the field of computational human biomechanics. A connection between muscular force and intramuscular pressure (IMP) has been uncovered that could prove invaluable in medical diagnostics as a method to circumvent the use of electromyography.

Preliminary finite element simulations were conducted to model the human tibialis anterior muscle in passive lengthening and active contraction. These simulations, totaling over 50 unique runs, utilized a novel constitutive model developed within the IMP research group. Volumetric strain, reaction forces, and pressure gradients were compared to data acquired from ongoing in vivo human experiments. A mechanism for …


Anthropomorphic Robotic Ankle-Foot Prosthesis With Active Dorsiflexion- Plantarflexion And Inversion-Eversion, Evandro Ficanha Jan 2015

Anthropomorphic Robotic Ankle-Foot Prosthesis With Active Dorsiflexion- Plantarflexion And Inversion-Eversion, Evandro Ficanha

Dissertations, Master's Theses and Master's Reports

The main goal of the research presented in this paper is the development of a powered ankle-foot prosthesis with anthropomorphic characteristics to facilitate turning, walking on irregular grounds, and reducing secondary injuries on bellow knee amputees. The research includes the study of the gait in unimpaired human subjects that includes the kinetics and kinematics of the ankle during different types of gait, in different gait speeds at different turning maneuvers. The development of a robotic ankle-foot prosthesis with two active degrees of freedom (DOF) controlled using admittance and impedance controllers is presented. Also, a novel testing apparatus for estimation of …


Measuring Head Impact Contact Pressure In Collegiate Football Games To Correlate Head Kinematics To Brain Kinetics Elucidating Brain Injury Dynamics, Chandrika S. Abhang Jan 2014

Measuring Head Impact Contact Pressure In Collegiate Football Games To Correlate Head Kinematics To Brain Kinetics Elucidating Brain Injury Dynamics, Chandrika S. Abhang

Dissertations, Master's Theses and Master's Reports - Open

Does a brain store thoughts and memories the way a computer saves its files? How can a single hit or a fall erase all those memories? Brain Mapping and traumatic brain injuries (TBIs) have become widely researched fields today. Many researchers have been studying TBIs caused to adult American football players however youth athletes have been rarely considered for these studies, contradicting to the fact that American football enrolls highest number of collegiate and high-school children than adults. This research is an attempt to contribute to the field of youth TBIs.

Earlier studies have related head kinematics (linear and angular …


Water Removal From Gas Flow Channels Of Fuel Cells, Jeffrey S. Allen Sep 2013

Water Removal From Gas Flow Channels Of Fuel Cells, Jeffrey S. Allen

Michigan Tech Patents

An apparatus for water management in a fuel cell. The apparatus includes a fuel cell having a first porous electrode layer, a second porous electrode layer, a proton-conducting membrane positioned between the first electrode and second electrode layers, and a first and second bi-polar distribution plate, wherein the first bi-polar distribution plate is positioned on a top of the first electrode layer and defining a first gas flow channel, and wherein the second bi-polar distribution plate is positioned on a bottom of the second electrode layer and defining a second gas flow channel. The apparatus further includes a mechanism for …


Ankle Impedance And Ankle Angles During Step Turn And Straight Walk: Implications For The Design Of A Steerable Ankle-Foot Prosthetic Robot, Evandro M. Ficanha Jan 2013

Ankle Impedance And Ankle Angles During Step Turn And Straight Walk: Implications For The Design Of A Steerable Ankle-Foot Prosthetic Robot, Evandro M. Ficanha

Dissertations, Master's Theses and Master's Reports - Open

During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a …