Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Michigan Technological University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 326

Full-Text Articles in Mechanical Engineering

Stability Analysis On Nonequilibrium Supersonic Boundary Layer Flow With Velocity-Slip Boundary Conditions, Xin He, Chunpei Cai Jul 2019

Stability Analysis On Nonequilibrium Supersonic Boundary Layer Flow With Velocity-Slip Boundary Conditions, Xin He, Chunpei Cai

Michigan Tech Publications

This paper presents our recent work on investigating velocity slip boundary conditions’ effects on supersonic flat plate boundary layer flow stability. The velocity-slip boundary conditions are adopted and the flow properties are obtained by solving boundary layer equations. Stability analysis of two such boundary layer flows is performed by using the Linear stability theory. A global method is first utilized to obtain approximate discrete mode values. A local method is then utilized to refine these mode values. All the modes in these two scenarios have been tracked upstream-wisely towards the leading edge and also downstream-wisely. The mode values for the ...


Pseudo-Spectral Method To Control Three-Degree-Of-Freedom Wave Energy Converters, Ossama Abdelkhalik, Giorgio Bacelli, Shangyan Zou, Rush D. Robinett Iii, David G. Wilson, Ryan G. Coe Jul 2019

Pseudo-Spectral Method To Control Three-Degree-Of-Freedom Wave Energy Converters, Ossama Abdelkhalik, Giorgio Bacelli, Shangyan Zou, Rush D. Robinett Iii, David G. Wilson, Ryan G. Coe

Michigan Tech Patents

The invention provides optimal control of a three-degree-of-freedom wave energy converter using a pseudo-spectral control method. The three modes are the heave, pitch and surge. A dynamic model is characterized by a coupling between the pitch and surge modes, while the heave is decoupled. The heave, however, excites the pitch motion through nonlinear parametric excitation in the pitch mode. The invention can use a Fourier series as basis functions to approximate the states and the control. For the parametric excited case, a sequential quadratic programming approach can be implemented to numerically solve for the optimal control. The numerical results show ...


Generating Electrospray From A Ferrofluid, Lyon Bradley King Jun 2019

Generating Electrospray From A Ferrofluid, Lyon Bradley King

Michigan Tech Patents

An electrospray device for generating electrospray from a ferrofluid. The electrospray device includes an emitter, an extraction electrode, and a magnet. The emitter is configured to receive a ferrofluidic liquid. The extraction electrode includes an aperture and is positioned a first distance from the emitter. The magnet generates a magnetic field in a first direction toward the emitter. The magnetic field causes Rosensweig instability in the ferrofluidic liquid, and generates a ferrofluidic peak in the ferrofluidic liquid. The magnet is positioned a second distance from the emitter, and the emitter is positioned between the extraction electrode and the magnet. The ...


Mapping Modeled Exposure Of Wildland Fire Smoke For Human Health Studies In California, Patricia Koman, Michael Billmire, Kirk Baker, Ricardo De Majo, Frank Anderson, Sumi Hoshiko, Brian Thelen, Nancy H. F. French Jun 2019

Mapping Modeled Exposure Of Wildland Fire Smoke For Human Health Studies In California, Patricia Koman, Michael Billmire, Kirk Baker, Ricardo De Majo, Frank Anderson, Sumi Hoshiko, Brian Thelen, Nancy H. F. French

Michigan Tech Publications

Wildland fire smoke exposure affects a broad proportion of the U.S. population and is increasing due to climate change, settlement patterns and fire seclusion. Significant public health questions surrounding its effects remain, including the impact on cardiovascular disease and maternal health. Using atmospheric chemical transport modeling, we examined general air quality with and without wildland fire smoke PM2.5. The 24-h average concentration of PM2.5 from all sources in 12-km gridded output from all sources in California (2007–2013) was 4.91 μg/m3. The average concentration of fire-PM2.5 in California by year ...


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ...


Agent-Based Microgrid Architecture For Generation Following Protocols, Steven Goldsmith May 2019

Agent-Based Microgrid Architecture For Generation Following Protocols, Steven Goldsmith

Michigan Tech Patents

A system for predicting power and loads over a single, relatively short time horizon. More specifically, a system comprising a Storage Agent (S-agent) Cohort within a grid control society, wherein the system expands G and L intra-cohort protocols to allow the S-cohort to participate in power management of the grid by scheduling storage components in source or load roles as determined by the time-varying state of the power imbalance and by the risk-adjusting capacity margin relationship between the G and L cohorts.


Capillary Penetration Method For Measuring Wetting Properties Of Carbon Ionomer Films For Proton Exchange Membrane Fuel Cell (Pemfc) Applications, Sofyane Abbou, Kazuya Tajiri, K. T. Alofari, Ezequiel F. Medici, A. T. Haug, Jeffrey S. Allen Apr 2019

Capillary Penetration Method For Measuring Wetting Properties Of Carbon Ionomer Films For Proton Exchange Membrane Fuel Cell (Pemfc) Applications, Sofyane Abbou, Kazuya Tajiri, K. T. Alofari, Ezequiel F. Medici, A. T. Haug, Jeffrey S. Allen

Michigan Tech Publications

In this work, capillary rise experiments were performed to assess the wetting properties of carbon-ionomer (CI) films. The samples were attached to a micro-balance and then immersed into liquid water to (i) measure the mass gain from the liquid uptake and (ii) estimate the (external) contact angle to water (typical value around 140°). The results showed that drying the CI films under low vacuum significantly impacted the CI film wettability. The influence of the ionomer content on the CI films’ wettability was investigated with various ionomer to carbon (I/C) ratios: 0.8, 1.0, 1.2 and 1.4 ...


A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky-Golay Filter For Ecg Denoising, Hui Huang, Shiyan Hu, Ye Sun Apr 2019

A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky-Golay Filter For Ecg Denoising, Hui Huang, Shiyan Hu, Ye Sun

Department of Mechanical Engineering-Engineering Mechanics Publications

Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often ...


A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky⁻Golay Filter For Ecg Denoising., Hui Huang, Shiyan Hu, Ye Sun Apr 2019

A Discrete Curvature Estimation Based Low-Distortion Adaptive Savitzky⁻Golay Filter For Ecg Denoising., Hui Huang, Shiyan Hu, Ye Sun

Michigan Tech Publications

Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often ...


A Novel Correlation Model For Horizontal Axis Wind Turbines Operating At High-Interference Flow Regimes, Anurag Rajan, Fernando L. Ponta Mar 2019

A Novel Correlation Model For Horizontal Axis Wind Turbines Operating At High-Interference Flow Regimes, Anurag Rajan, Fernando L. Ponta

Department of Mechanical Engineering-Engineering Mechanics Publications

Driven by economics-of-scale factors, wind-turbine rotor sizes have increased formidably in recent years. Larger rotors with lighter blades of increased flexibility will experiment substantially higher levels of deformation. Future turbines will also incorporate advanced control strategies to widen the range of wind velocities over which energy is captured. These factors will extend turbine operational regimes, including flow states with high interference factors. In this paper we derive a new empirical relation to both improve and extend the range of Blade Element Momentum (BEM) models, when applied to high interference-factor regimes. In most BEM models, these flow regimes are modeled using ...


A Hamiltonian Surface-Shaping Approach For Control System Analysis And The Design Of Nonlinear Wave Energy Converters, Shadi Darani, Ossama Abdelkhalik, Rush D. Robinett Iii, David Wilson Feb 2019

A Hamiltonian Surface-Shaping Approach For Control System Analysis And The Design Of Nonlinear Wave Energy Converters, Shadi Darani, Ossama Abdelkhalik, Rush D. Robinett Iii, David Wilson

Department of Mechanical Engineering-Engineering Mechanics Publications

The dynamic model of Wave Energy Converters (WECs) may have nonlinearities due to several reasons such as a nonuniform buoy shape and/or nonlinear power takeoff units. This paper presents the Hamiltonian Surface-Shaping (HSS) approach as a tool for the analysis and design of nonlinear control of WECs. The Hamiltonian represents the stored energy in the system and can be constructed as a function of the WEC’s system states, its position, and velocity. The Hamiltonian surface is defined by the energy storage, while the system trajectories are constrained to this surface and determined by the power flows of the ...


Optimal Control Of Wave Energy Converters, Ossama Abdelkhalik, Rush D. Robinett Iii, Shangyan Zou, Giorgio Bacelli, David G. Wilson, Umesh Korde Feb 2019

Optimal Control Of Wave Energy Converters, Ossama Abdelkhalik, Rush D. Robinett Iii, Shangyan Zou, Giorgio Bacelli, David G. Wilson, Umesh Korde

Michigan Tech Patents

A wave energy converter and method for extracting energy from water waves maximizes the energy extraction per cycle by estimating an excitation force of heave wave motion on the buoy, computing a control force from the estimated excitation force using a dynamic model, and applying the computed control force to the buoy to extract energy from the heave wave motion. Analysis and numerical simulations demonstrate that the optimal control of a heave wave energy converter is, in general, in the form of a bang-singular-bang control; in which the optimal control at a given time can be either in the singular ...


Comprehensive Parameters Identification And Dynamic Model Validation Of Interior-Mount Line-Start Permanent Magnet Synchronous Motors, Luqman S. Maraaba, Zakariya M. Al-Hamouz, Absulaziz S. Milhem, Ssennoga Twaha Jan 2019

Comprehensive Parameters Identification And Dynamic Model Validation Of Interior-Mount Line-Start Permanent Magnet Synchronous Motors, Luqman S. Maraaba, Zakariya M. Al-Hamouz, Absulaziz S. Milhem, Ssennoga Twaha

School of Technology Publications

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of ...


Experimental Characterization Of Hydraulic System Sound, Ben Kolb Jan 2019

Experimental Characterization Of Hydraulic System Sound, Ben Kolb

Dissertations, Master's Theses and Master's Reports

The purpose of this research was to establish test methods for characterizing the interaction between the hydraulic fluid and hydraulic hose at clipping points in mobile heavy equipment hydraulic systems. A simple hydraulic circuit test bench was developed and the laboratory axial piston pump was characterized using ISO 10767-1. A direct relationship between the fluidborne noise and structureborne noise present at each hose clip location was observed for a specific operating condition using operating deflection shapes and structureborne noise measurements. This result shows that optimal hose clip placement can be a viable solution to structureborne noise reduction. Additionally, a modal ...


Closed Loop Energy Maximizing Control Of A Wave Energy Converter Using An Estimated Linear Model That Approximates The Nonlinear Froude-Krylov Force, Yaqzan Mohd Yaqzan Jan 2019

Closed Loop Energy Maximizing Control Of A Wave Energy Converter Using An Estimated Linear Model That Approximates The Nonlinear Froude-Krylov Force, Yaqzan Mohd Yaqzan

Dissertations, Master's Theses and Master's Reports

Wave energy converters (WECs) exploit ocean wave energy and convert it into useful forms such as electricity. But for WECs to be successful on a large scale, two primary conditions need to be satisfied. The energy generated must satisfy the network requirements, and second, energy flow from waves to the grid needs to be maximized. In this dissertation, we address the second problem. Most control techniques for WECs today use the Cummins' linear model to simulate WEC hydrodynamics. However, it has been shown that under the application of a control force, where WEC motions are amplified, the linear model diverges ...


Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria Jan 2019

Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria

Dissertations, Master's Theses and Master's Reports

This study is an extension to the design of ceramic materials component exposed to bullet impact. Owing to the brittle nature of ceramics upon bullet impact, shattered pieces behave as pellets flying with different velocities and directions, damaging surrounding components. Testing to study the behavior of ceramics under ballistic impact can be cumbersome and expensive. Modeling the set-up through Finite Element Analysis (FEA) makes it economical and easy to optimize. However, appropriately incorporating the material in modeling makes laboratory testing essential. Previous efforts have concentrated on simulating crack pattern developed during 0.22 caliber pellet impact on Borosilicate glass. A ...


Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein Jan 2019

Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein

Dissertations, Master's Theses and Master's Reports

The US military is moving toward the electrification of many weapon systems and platforms. Advanced weapon systems such as high energy radar, electro-magnetic kinetic weapons and directed energy pose significant integration challenges due to their pulsed power electrical load profile. Additionally, the weapons platforms, including ships, aircraft, and vehicles can be studied as a mobile microgrids with multiple generation sources, loads, and energy storage. There is also a desire to extend the mission profile and capabilities of these systems. Common goals are to increase fuel efficiency, maintaining system stability, and reduce energy storage size as typically required to enable pulsed ...


Mechanical Engineering Technology Newsletter 2019, Department Of Manufacturing And Mechanical Engineering Technology, Michigan Technological University Jan 2019

Mechanical Engineering Technology Newsletter 2019, Department Of Manufacturing And Mechanical Engineering Technology, Michigan Technological University

Department of Manufacturing and Mechanical Engineering Technology Newsletters

Table of Contents

  • Where Racing Will Take Him
  • Irwin Wins Center for Teaching and Learning Instructional Award
  • Five MET Students Inducted into Epsilon Pi Tau Honor Society
  • 2018 and 2019 Scholarship Awards
  • 2018 Bob Mark Business Model Competition
  • Senior Design Projects
  • What's New?


Networked Microgrid Optimization And Energy Management, Robert S. Jane Jan 2019

Networked Microgrid Optimization And Energy Management, Robert S. Jane

Dissertations, Master's Theses and Master's Reports

Military vehicles possess attributes consistent with a microgrid, containing electrical energy generation, storage, government furnished equipment (GFE), and the ability to share these capabilities via interconnection. Many military vehicles have significant energy storage capacity to satisfy silent watch requirements, making them particularly well-suited to share their energy storage capabilities with stationary microgrids for more efficient energy management. Further, the energy generation capacity and the fuel consumption rate of the vehicles are comparable to standard diesel generators, for certain scenarios, the use of the vehicles could result in more efficient operation. Energy management of a microgrid is an open area of ...


Improved Low-Frequency Impact Insulation Class Measurements Based On Comparison Techniques, Sunit Girdhar Jan 2019

Improved Low-Frequency Impact Insulation Class Measurements Based On Comparison Techniques, Sunit Girdhar

Dissertations, Master's Theses and Master's Reports

In today’s world, noise pollution is growing as a major concern and it is becoming more and more difficult to find quiet places. But when the problem escalates to the extent that people are annoyed with loud noises even in their apartments, it becomes an alarming issue for engineers. Around the world, cities have defined some basic performance requirements for buildings, and isolation of residents from noise is one of the cardinal performance requirements. In the United States, building codes use the Impact Insulation Class (IIC) rating to characterize the performance of floor/ceiling assemblies. This method uses the ...


Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop Jan 2019

Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop

Dissertations, Master's Theses and Master's Reports

The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network ...


Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro Jan 2019

Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable ...


Acoustic Localization Techniques For Application In Near-Shore Arctic Environments, Miles B. Penhale Jan 2019

Acoustic Localization Techniques For Application In Near-Shore Arctic Environments, Miles B. Penhale

Dissertations, Master's Theses and Master's Reports

The Arctic environment has undergone significant change in recent years. Multi-year ice is no longer prevalent in the Arctic. Instead, Arctic ice melts during summer months and re-freezes each winter. First-year ice, in comparison to multi-year ice, is different in terms of its acoustic properties. Therefore, acoustic propagation models of the Arctic may no longer be valid. The open water in the Arctic for longer time periods during the year invites anthropogenic traffic such as civilian tourism, industrial shipping, natural resource exploration, and military exercises. It is important to understand sound propagation in the first-year ice environment, especially in near-shore ...


Paddle Mixer-Extrusion Reactor For Torrefaction And Pyrolysis, Stas Zinchik Jan 2019

Paddle Mixer-Extrusion Reactor For Torrefaction And Pyrolysis, Stas Zinchik

Dissertations, Master's Theses and Master's Reports

This work is focused on the fundamental understanding and the development of paddle mixer reactors (or modified screw augers). This work will contribute to the effort of the thermal conversion of biomass and wastes. We developed and studied two paddle systems (i) 25-mm lab-scale (up to 1 kg/hr) and (ii) 101-mm pilot-scale (up to 100 kg/hr). Thermal behavior of the two systems was studied and it was estimated that the lab-scale system has a high heating rate of up to 530 °C/s. Residence times were thoroughly measured and were determined as a function of rotation frequency and ...


Comparative Study And Design Of Economical Sound Intensity Probe, Karan Gundre Jan 2019

Comparative Study And Design Of Economical Sound Intensity Probe, Karan Gundre

Dissertations, Master's Theses and Master's Reports

The theory of sound intensity measurement using the two-microphone method was first developed in the late 1970s. Even though the measurements were limited by the technology of the time, the theory was straight-forward and considerable attention was given to improving precision during testing or post-processing. With the development of modern equipment, however, the focus shifted to the apparatus. The commercial intensity probes available today have microphones that are already phase-matched. This eliminates the need for correction during or post-testing as a majority of the errors are minimized before any data is even collected. Although such intensity probes facilitate taking precise ...


Remotely Controlled Industrial Robotic Arm And Simulation Of Automated Thermal Furnace, Prince Mehandi Ratta Jan 2019

Remotely Controlled Industrial Robotic Arm And Simulation Of Automated Thermal Furnace, Prince Mehandi Ratta

Dissertations, Master's Theses and Master's Reports

The right execution of controllers ensures the correct analysis of information, generating efficient results and better optimizing the system. In this report, two controllers were designed. Firstly, a remotely controlled robotic arm, since there are no such type commercially available controllers. Moreover, robotic platforms are costly, so students and researchers are often unable to learn the concepts of programming industrial robots. This project makes a non-destructive, remotely-controlled robotic arm to better teach students and researchers about programming and control of robotic arms. Secondly, simulation of an automated thermal furnace for ArcelorMittal on SIMULINK, which is used for the annealing process ...


Development Of A Fused Deposition 3d Printed Buoy And Method For Quantifying Wave Tank Reflections, Samantha G. Swartzmiller Jan 2019

Development Of A Fused Deposition 3d Printed Buoy And Method For Quantifying Wave Tank Reflections, Samantha G. Swartzmiller

Dissertations, Master's Theses and Master's Reports

Testing model scale prototypes is integral to the development of wave energy converter (WEC) technology. Model scale WECs are tested in wave tanks where they are subjected to repeatable wave fields. Their presence in water creates radiated waves that eventually reflect off tank walls disrupting the intended wave field. Fabrication of model scale WECs is another developing aspect of tank testing. Often model WECs are built of foam. Additive manufacturing is a promising alternative although the most common method, fused deposition modeling (FDM) 3D printing, does not typically produce waterproof parts. The goals of this work were 1) develop a ...


Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker Oct 2018

Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker

Michigan Tech Publications

Reliability is a key consideration when microgrid technology is implemented in military applications. Droop control provides a simple option without requiring communication between microgrid components, increasing the control system reliability. However, traditional droop control does not allow the microgrid to utilize much of the power available from a solar resource. This paper applies an optimal multidimensional droop control strategy for a solar resource connected in a microgrid at a military patrol base. Simulation and hardware-in-the-loop experiments of a sample microgrid show that much more power from the solar resource can be utilized, while maintaining the system’s bus voltage around ...


Method To Provide Meta-Stable Operation Of Dc Microgrid Comprising A Pulsed Load, David G. Wilson, Wayne Weaver, Rush D. Robinett Iii, Ronald Matthews, Steven F. Glover Oct 2018

Method To Provide Meta-Stable Operation Of Dc Microgrid Comprising A Pulsed Load, David G. Wilson, Wayne Weaver, Rush D. Robinett Iii, Ronald Matthews, Steven F. Glover

Michigan Tech Patents

A Hamiltonian surface shaping power flow control (HSSPFC) method is used to analyze the meta-stability and adjust pulsed power loads on a DC electric power distribution network. Pulsed power loads are nonlinear, time-variant systems that cause nonlinear limit-cycles. During the on periods of a pulsed load, the system can be in an unstable state and is damped back to stability during the off state of the load. Therefore, over the entire period of the pulse the system may only be assessed as meta-stable. As shown through simulation, HIL and hardware results, the HSSPFC method is more accurate than the other ...


Meniscus Modeling And Emission Studies Of An Ionic Liquid Ferrofluid Electrospray Source Emitting From A Magneto-Electric Instability, Brandon Jackson Jan 2018

Meniscus Modeling And Emission Studies Of An Ionic Liquid Ferrofluid Electrospray Source Emitting From A Magneto-Electric Instability, Brandon Jackson

Dissertations, Master's Theses and Master's Reports

This dissertation presents three studies on the electrospray of ionic liquid ferrofluid. Ionic liquid ferrofluids are electrically conductive super-paramagnetic fluids which respond strongly in the presence of electric and magnetic fields. When a small reservoir of ionic liquid ferrofluid is positioned within a magnetic field, magnetic stresses will deform the fluid interface into a peak. The addition of a strong electric field will further stress the fluid interface until a threshold stress is reached at which point the surface tension cannot contain the combined stresses and a spray of fluid or ions results at the apex. This process is termed ...