Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

The Influence Of Frontal And Axial Plane Deformities On Contact Mechanics During Squatting: A Finite Element Study, Yidan Xu Jan 2022

The Influence Of Frontal And Axial Plane Deformities On Contact Mechanics During Squatting: A Finite Element Study, Yidan Xu

Electronic Thesis and Dissertation Repository

Knee Osteoarthritis (KOA) is a degenerative joint disease and a leading cause of disability worldwide. Lower limb malalignment was a risky factor leading to KOA, altering the load distributions. This study aimed to study the influence of knee deformities on knee contact mechanics and knee kinematics during squatting. A full-leg squat FE model was developed based on general open-source models and validated with in vivo studies to investigate the outputs under frontal malalignment (valgus 8° to varus 8°) and axial malalignment (miserable malalignment 30°). As a result, Varus-aligned and miserable aligned models increased medial tibiofemoral force and lateral patellar contact …


Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang Jan 2021

Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang

Electronic Theses and Dissertations

Cemented and cementless fixation in total knee arthroplasty (TKA) have been successfully used for decades. As the number of younger and more active patients treated with TKA continues to increase, long-term implant survivorship is of increasing importance. One of the most common complications and hence the reason for revision is mechanical loosening (23.1% of all revised TKA). The loosening mechanisms have been proposed for different fixation types. For cemented fixation, bone remodeling after surgery is regulated by the changes in strain energy density (SED). The recruitment of osteoclasts and osteoblasts is controlled by SED-related signals. Insufficient stimuli can promote bone …


A 3d Fem Comparative Study On The Impact Response Between Human Head And Nocsae Head Due To Free Fall, Amey S. Badhe Jan 2017

A 3d Fem Comparative Study On The Impact Response Between Human Head And Nocsae Head Due To Free Fall, Amey S. Badhe

Dissertations, Master's Theses and Master's Reports

We all enjoy sports be it watching or playing. Concussion is well known topic when it comes sports related injuries. However, concussion and brain injury is not exclusive to sports and outdoor activities. Sometimes, even the impact due to slip and fall at small heights can cause serious damage to the head and brain. This report studies the response generated in the human head model and the commercially use dummy NOCSAE headform due to drop from height of 2, 3, 4 and 5 feet. Earlier studies have related brain kinetics and head kinematics to concussion and traumatic brain injury (TBI). …


Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla Jun 2015

Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla

Master's Theses

Osteoarthritis (OA) is a degenerative condition of articular cartilage that affects more than 25 million people in the US. Joint injuries, like anterior cruciate ligament (ACL) tears, can lead to OA due to a change in articular cartilage loading. Gait analysis combined with knee joint finite element modeling (FEM) has been used to predict the articular cartilage loading. To predict the change of articular cartilage loading during gait due to various ACL injuries, a tibiofemoral FEM was developed from magnetic resonance images (MRIs) of a 33 year male, with no prior history of knee injuries. The FEM was validated for …


Development And Validation Of A Human Knee Joint Finite Element Model For Tissue Stress And Strain Predictions During Exercise, Spencer D. Wangerin Dec 2013

Development And Validation Of A Human Knee Joint Finite Element Model For Tissue Stress And Strain Predictions During Exercise, Spencer D. Wangerin

Master's Theses

Osteoarthritis (OA) is a degenerative condition of cartilage and is the leading cost of disability in the United States. Motion analysis experiments in combination with knee-joint finite element (FE) analysis may be used to identify exercises that maintain knee-joint osteochondral (OC) loading at safe levels for patients at high-risk for knee OA, individuals with modest OC defects, or patients rehabilitating after surgical interventions. Therefore, a detailed total knee-joint FE model was developed by modifying open-source knee-joint geometries in order to predict OC tissue stress and strain during the stance phase of gait. The model was partially validated for predicting the …